SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson My) srt2:(2015-2019)"

Sökning: WFRF:(Andersson My) > (2015-2019)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Adelöf, Julia, 1990, et al. (författare)
  • PA28αβ overexpression enhances learning and memory of female mice without inducing 20S proteasome activity
  • 2018
  • Ingår i: BMC Neuroscience. - : Springer Science and Business Media LLC. - 1471-2202. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The proteasome system plays an important role in synaptic plasticity. Induction and maintenance of long term potentiation is directly dependent on selective targeting of proteins for proteasomal degradation. The 20S proteasome activator PA28αβ activates hydrolysis of small nonubiquitinated peptides and possesses protective functions upon oxidative stress and proteinopathy. The effect of PA28αβ activity on behavior and memory function is, however, not known. We generated a mouse model that overexpresses PA28α (PA28αOE) to understand PA28αβ function during healthy adult homeostasis via assessment of physiological and behavioral profiles, focusing on female mice. RESULTS: PA28α and PA28β protein levels were markedly increased in all PA28αOE tissues analyzed. PA28αOE displayed reduced depressive-like behavior in the forced swim test and improved memory/learning function assessed by intersession habituation in activity box and shuttle box passive avoidance test, with no significant differences in anxiety or general locomotor activity. Nor were there any differences found when compared to WT for body composition or immuno-profile. The cognitive effects of PA28αOE were female specific, but could not be explained by alterations in estrogen serum levels or hippocampal regulation of estrogen receptor β. Further, there were no differences in hippocampal protein expression of neuronal or synaptic markers between PA28αOE and WT. Biochemical analysis of hippocampal extracts demonstrated that PA28α overexpression did not increase PA28-20S peptidase activity or decrease K48-polyubiquitin levels. Instead, PA28αOE exhibited elevated efficiency in preventing aggregation in the hippocampus. CONCLUSIONS: This study reveals, for the first time, a connection between PA28αβ and neuronal function. We found that PA28α overexpressing female mice displayed reduced depressive-like behavior and enhanced learning and memory. Since the positive effects of PA28α overexpression arose without an activation of 20S proteasome capacity, they are likely independent of PA28αβ's role as a 20S proteasome activator and instead depend on a recognized chaperone-like function. These findings suggest that proteostasis in synaptic plasticity is more diverse than previously reported, and demonstrates a novel function of PA28αβ in the brain.
  •  
3.
  • Alsholm, Linda, et al. (författare)
  • Interrupted transport by the emergency medical service in stroke/transitory ischemic attack : A consequence of changed treatment routines in prehospital emergency care.
  • 2019
  • Ingår i: Brain and Behavior. - : Wiley. - 2162-3279 .- 2162-3279.
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The discovery that not all patients who call for the emergency medical service (EMS) require transport to hospital has changed the structure of prehospital emergency care. Today, the EMS clinician at the scene already distinguishes patients with a time-critical condition such as stroke/transitory ischemic attack (TIA) from patients without. This highlights the importance of the early identification of stroke/TIA.AIM: To describe patients with a final diagnosis of stroke/TIA whose transport to hospital was interrupted either due to a lack of suspicion of the disease by the EMS crew or due to refusal by the patient or a relative/friend.METHODS: Data were obtained from a register in Gothenburg, covering patients hospitalised due to a final diagnosis of stroke/TIA. The inclusion criterion was that patients were assessed by the EMS but were not directly transported to hospital by the EMS.RESULTS: Among all the patients who were assessed by the EMS nurse and subsequently diagnosed with stroke or TIA in 2015, the transport of 34 of 1,310 patients (2.6%) was interrupted. Twenty-five of these patients, of whom 20 had a stroke and five had a TIA, are described in terms of initial symptoms and outcome. The majority had residual symptoms at discharge from hospital. Initial symptoms were vertigo/disturbed balance in 11 of 25 cases. Another three had symptoms perceived as a change in personality and three had a headache.CONCLUSION: From this pilot study, we hypothesise that a fraction of patients with stroke/TIA who call for the EMS have their direct transport to hospital interrupted due to a lack of suspicion of the disease by the EMS nurse at the scene. These patients appear to have more vague symptoms including vertigo and disturbed balance. Instruments to identify these patients at the scene are warranted.
  •  
4.
  • Andersson, My, et al. (författare)
  • Optogenetic control of human neurons in organotypic brain cultures
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies.
  •  
5.
  • Avaliani, Natalia, et al. (författare)
  • Directly Converted Human Fibroblasts Mature to Neurons and Show Long-Term Survival in Adult Rodent Hippocampus
  • 2017
  • Ingår i: Stem Cells International. - : Hindawi Limited. - 1687-966X .- 1687-9678. ; 2017
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct conversion of human somatic cells to induced neurons (iNs), using lineage-specific transcription factors has opened new opportunities for cell therapy in a number of neurological diseases, including epilepsy. In most severe cases of epilepsy, seizures often originate in the hippocampus, where populations of inhibitory interneurons degenerate. Thus, iNs could be of potential use to replace these lost interneurons. It is not known, however, if iNs survive and maintain functional neuronal properties for prolonged time periods in in vivo. We transplanted human fibroblast-derived iNs into the adult rat hippocampus and observed a progressive morphological differentiation, with more developed dendritic arborisation at six months as compared to one month. This was accompanied by mature electrophysiological properties and fast high amplitude action potentials at six months after transplantation. This proof-of-principle study suggests that human iNs can be developed as a candidate source for cell replacement therapy in temporal lobe epilepsy.
  •  
6.
  • Berglind, Fredrik, et al. (författare)
  • Dynamic interaction of local and transhemispheric networks is necessary for progressive intensification of hippocampal seizures
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The detailed mechanisms of progressive intensification of seizures often occurring in epilepsy are not well understood. Animal models of kindling, with progressive intensification of stimulation-induced seizures, have been previously used to investigate alterations in neuronal networks, but has been obscured by limited recording capabilities during electrical stimulations. Remote networks in kindling have been studied by physical deletions of the connected structures or pathways, inevitably leading to structural reorganisations and related adverse effects. We used optogenetics to circumvent the above-mentioned problems inherent to electrical kindling, and chemogenetics to temporarily inhibit rather than ablate the remote interconnected networks. Progressively intensifying afterdischarges (ADs) were induced by repetitive photoactivation of principal neurons in the hippocampus of anaesthetized transgenic mice expressing ChR2. This allowed, during the stimulation, to reveal dynamic increases in local field potentials (LFPs), which coincided with the start of AD intensification. Furthermore, chemogenetic functional inhibition of contralateral hippocampal neurons via hM4D(Gi) receptors abrogated AD progression. These findings demonstrate that, during repeated activation, local circuits undergo acute plastic changes with appearance of additional network discharges (LFPs), leading to transhemispheric recruitment of contralateral dentate gyrus, which seems to be necessary for progressive intensification of ADs.
  •  
7.
  • Forsberg, My, et al. (författare)
  • Ionized calcium in human cerebrospinal fluid and its influence on intrinsic and synaptic excitability of hippocampal pyramidal neurons in the rat.
  • 2019
  • Ingår i: Journal of neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 149:4, s. 452-470
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well-known that the extracellular concentration of calcium affects neuronal excitability and synaptic transmission. Less is known about the physiological concentration of extracellular calcium in the brain. In electrophysiological brain slice experiments, the artificial cerebrospinal fluid traditionally contains relatively high concentrations of calcium (2-4 mM) to support synaptic transmission and suppress neuronal excitability. Using an ion-selective electrode, we determined the fraction of ionized calcium in healthy human cerebrospinal fluid to 1.0mM of a total concentration of 1.2 mM (86%). Using patch-clamp and extracellular recordings in the CA1 region in acute slices of rat hippocampus, we then compared the effects of this physiological concentration of calcium with the commonly used 2 mM on neuronal excitability, synaptic transmission, and long-term potentiation (LTP) to examine the magnitude of changes in this range of extracellular calcium. Increasing the total extracellular calcium concentration from 1.2 to 2 mM decreased spontaneous action potential firing, induced a depolarization of the threshold, and increased the rate of both de- and repolarization of the action potential. Evoked synaptic transmission was approximately doubled, with a balanced effect between inhibition and excitation. In 1.2mM calcium high-frequency stimulation did not result in any LTP, whereas a prominent LTP was observed at 2 or 4 mM calcium. Surprisingly, this inability to induce LTP persisted during blockade of GABAergic inhibition. In conclusion, an increase from the physiological 1.2 mM to 2 mM calcium in the artificial cerebrospinal fluid has striking effects on neuronal excitability, synaptic transmission, and the induction of LTP.
  •  
8.
  • Ledri, Marco, et al. (författare)
  • Differential Effect of Neuropeptides on Excitatory Synaptic Transmission in Human Epileptic Hippocampus.
  • 2015
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 35:26, s. 9622-9631
  • Tidskriftsartikel (refereegranskat)abstract
    • Development of novel disease-modifying treatment strategies for neurological disorders, which at present have no cure, represents a major challenge for today's neurology. Translation of findings from animal models to humans represents an unresolved gap in most of the preclinical studies. Gene therapy is an evolving innovative approach that may prove useful for clinical applications. In animal models of temporal lobe epilepsy (TLE), gene therapy treatments based on viral vectors encoding NPY or galanin have been shown to effectively suppress seizures. However, how this translates to human TLE remains unknown. A unique possibility to validate these animal studies is provided by a surgical therapeutic approach, whereby resected epileptic tissue from temporal lobes of pharmacoresistant patients are available for neurophysiological studies in vitro. To test whether NPY and galanin have antiepileptic actions in human epileptic tissue as well, we applied these neuropeptides directly to human hippocampal slices in vitro. NPY strongly decreased stimulation-induced EPSPs in dentate gyrus and CA1 (up to 30 and 55%, respectively) via Y2 receptors, while galanin had no significant effect. Receptor autoradiographic binding revealed the presence of both NPY and galanin receptors, while functional receptor binding was only detected for NPY, suggesting that galanin receptor signaling may be impaired. These results underline the importance of validating findings from animal studies in human brain tissue, and advocate for NPY as a more appropriate candidate than galanin for future gene therapy trials in pharmacoresistant TLE patients.
  •  
9.
  • Melin, Esbjörn, et al. (författare)
  • Disease Modification by Combinatorial Single Vector Gene Therapy : A Preclinical Translational Study in Epilepsy
  • 2019
  • Ingår i: Molecular Therapy - Methods and Clinical Development. - : Elsevier BV. - 2329-0501. ; 15, s. 179-193
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene therapy has been suggested as a plausible novel approach to achieve seizure control in patients with focal epilepsy that do not adequately respond to pharmacological treatment. We investigated the seizure-suppressant potential of combinatorial neuropeptide Y and Y2 receptor single vector gene therapy based on adeno-associated virus serotype 1 (AAV1) in rats. First, a dose-response study in the systemic kainate-induced acute seizure model was performed, whereby the 1012 genomic particles (gp)/mL titer of the vector was selected as an optimal concentration. Second, an efficacy study was performed in the intrahippocampal kainate chronic model of spontaneous recurrent seizures (SRSs), designed to reflect a likely clinical scenario, with magnetic resonance image (MRI)-guided focal unilateral administration of the vector in the hippocampus during the chronic stage of the disease. The efficacy study demonstrated a favorable outcome of the gene therapy, with a 31% responder rate (more than 50% reduction in SRS frequency) and 13% seizure-freedom rate, whereas no such effects were observed in the control animals. The inter-SRS and SRS cluster intervals were also significantly prolonged in the treated group compared to controls. In addition, the SRS duration was significantly reduced in the treated group but not in the controls. This study establishes the SRS-suppressant ability of the single vector combinatorial neuropeptide Y/Y2 receptor gene therapy in a clinically relevant chronic model of epilepsy.
  •  
10.
  • Sørensen, Andreas T., et al. (författare)
  • Altered chloride homeostasis decreases the action potential threshold and increases hyperexcitability in hippocampal neurons
  • 2017
  • Ingår i: eNeuro. - 2373-2822. ; 4:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Chloride ions play an important role in controlling excitability of principal neurons in the central nervous system. When neurotransmitter GABA is released from inhibitory interneurons, activated GABA type A (GABAA) receptors on principal neurons become permeable to chloride. Typically, chloride flows through activated GABAA receptors into the neurons causing hyperpolarization or shunting inhibition, and in turn inhibits action potential (AP) generation. However, in situations when intracellular chloride concentration is increased, chloride ions can flow in opposite direction, depolarize neurons, and promote AP generation. It is generally recognized that altered chloride homeostasis per se has no effect on the AP threshold. Here, we demonstrate that chloride overload of mouse principal CA3 pyramidal neurons not only makes these cells more excitable through GABAA receptor activation but also lowers the AP threshold, further aggravating excitability. This phenomenon has not been described in principal neurons and adds to our understanding of mechanisms regulating neuronal and network excitability, particularly in developing brain and during pathological situations with altered chloride homeostasis. This finding further broadens the spectrum of neuronal plasticity regulated by ionic compositions across the cellular membrane.
  •  
11.
  •  
12.
  • Wickham, Jenny, et al. (författare)
  • Inhibition of epileptiform activity by neuropeptide Y in brain tissue from drug-resistant temporal lobe epilepsy patients
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In epilepsy patients, drug-resistant seizures often originate in one of the temporal lobes. In selected cases, when certain requirements are met, this area is surgically resected for therapeutic reasons. We kept the resected tissue slices alive in vitro for 48 h to create a platform for testing a novel treatment strategy based on neuropeptide Y (NPY) against drug-resistant epilepsy. We demonstrate that NPY exerts a significant inhibitory effect on epileptiform activity, recorded with whole-cell patch-clamp, in human hippocampal dentate gyrus. Application of NPY reduced overall number of paroxysmal depolarising shifts and action potentials. This effect was mediated by Y2 receptors, since application of selective Y2-receptor antagonist blocked the effect of NPY. This proof-of-concept finding is an important translational milestone for validating NPY-based gene therapy for targeting focal drug-resistant epilepsies, and increasing the prospects for positive outcome in potential clinical trials.
  •  
13.
  • Thomas, HS, et al. (författare)
  • 2019
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy