SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andrén Per E. Professor 1957 ) srt2:(2023)"

Sökning: WFRF:(Andrén Per E. Professor 1957 ) > (2023)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • He, Yachao, et al. (författare)
  • Prosaposin maintains lipid homeostasis in dopamine neurons and counteracts experimental parkinsonism in rodents
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Prosaposin (PSAP) modulates glycosphingolipid metabolism and variants have been linked to Parkinson's disease (PD). Here, we find altered PSAP levels in the plasma, CSF and post-mortem brain of PD patients. Altered plasma and CSF PSAP levels correlatewith PD-relatedmotor impairments. Dopaminergic PSAP-deficient (cPSAP(DAT)) mice display hypolocomotion and depression/anxiety-like symptoms with mildly impaired dopaminergic neurotransmission, while serotonergic PSAP-deficient (cPSAP(SERT)) mice behave normally. Spatial lipidomics revealed an accumulation of highly unsaturated and shortened lipids and reduction of sphingolipids throughout the brains of cPSAP(DAT) mice. The overexpression of alpha-synuclein via AAV lead to more severe dopaminergic degeneration and higher p-Ser129 alpha-synuclein levels in cPSAP(DAT) mice compared to WT mice. Overexpression of PSAP via AAV and encapsulated cell biodelivery protected against 6-OHDA and alpha-synuclein toxicity in wild-type rodents. Thus, these findings suggest PSAP may maintain dopaminergic lipid homeostasis, which is dysregulated in PD, and counteract experimental parkinsonism.
  •  
2.
  • Kaya, Ibrahim, et al. (författare)
  • On-Tissue Chemical Derivatization for Comprehensive Mapping of Brain Carboxyl and Aldehyde Metabolites by MALDI-MS Imaging
  • 2023
  • Ingår i: Journal of the American Society for Mass Spectrometry. - : American Chemical Society (ACS). - 1044-0305 .- 1879-1123. ; 34:5, s. 836-846
  • Tidskriftsartikel (refereegranskat)abstract
    • The visualization of small metabolites by MALDI mass spectrometry imaging in brain tissue sections is challenging due to low detection sensitivity and high background interference. We present an on-tissue chemical derivatization MALDI mass spectrometry imaging approach for the comprehensive mapping of carboxyls and aldehydes in brain tissue sections. In this approach, the AMPP (1-(4-(aminomethyl)phenyl)pyridin-1-ium chloride) derivatization reagent is used for the covalent charge-tagging of molecules containing carboxylic acid (in the presence of peptide coupling reagents) and aldehydes. This includes free fatty acids and the associated metabolites, fatty aldehydes, dipeptides, neurotoxic reactive aldehydes, amino acids, neurotransmitters and associated metabolites, as well as tricarboxylic acid cycle metabolites. We performed sensitive ultrahigh mass resolution MALDI-MS detection and imaging of various carboxyl-and aldehyde containing endogenous metabolites simultaneously in rodent brain tissue sections. We verified the AMPP-derivatized metabolites by tandem MS for structural elucidation. This approach allowed us to image numerous aldehydes and carboxyls, including certain metabolites which had been undetectable in brain tissue sections. We also demonstrated the application of on-tissue derivatization to carboxyls and aldehydes in coronal brain tissue sections of a nonhuman primate Parkinson's disease model. Our methodology provides a powerful tool for the sensitive, simultaneous spatial molecular imaging of numerous aldehydes and carboxylic acids during pathological states, including neurodegeneration, in brain tissue.
  •  
3.
  • Kaya, Ibrahim, et al. (författare)
  • Spatial lipidomics reveals brain region-specific changes of sulfatides in an experimental MPTP Parkinson's disease primate model
  • 2023
  • Ingår i: NPJ PARKINSONS DISEASE. - : Springer Nature. - 2373-8057. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolism of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) to the neurotoxin MPP+ in the brain causes permanent Parkinson's disease-like symptoms by destroying dopaminergic neurons in the pars compacta of the substantia nigra in humans and non-human primates. However, the complete molecular pathology underlying MPTP-induced parkinsonism remains poorly understood. We used dual polarity matrix-assisted laser desorption/ionization mass spectrometry imaging to thoroughly image numerous glycerophospholipids and sphingolipids in coronal brain tissue sections of MPTP-lesioned and control non-human primate brains (Macaca mulatta). The results revealed specific distributions of several sulfatide lipid molecules based on chain-length, number of double bonds, and importantly, hydroxylation stage. More specifically, certain long-chain hydroxylated sulfatides with polyunsaturated chains in the molecular structure were depleted within motor-related brain regions in the MPTP-lesioned animals, e.g., external and internal segments of globus pallidus and substantia nigra pars reticulata. In contrast, certain long-chain non-hydroxylated sulfatides were found to be elevated within the same brain regions. These findings demonstrate region-specific dysregulation of sulfatide metabolism within the MPTP-lesioned macaque brain. The depletion of long-chain hydroxylated sulfatides in the MPTP-induced pathology indicates oxidative stress and oligodendrocyte/myelin damage within the pathologically relevant brain regions. Hence, the presented findings improve our current understanding of the molecular pathology of MPTP-induced parkinsonism within primate brains, and provide a basis for further research regarding the role of dysregulated sulfatide metabolism in PD.
  •  
4.
  • Vallianatou, Theodosia, et al. (författare)
  • Rapid Metabolic Profiling of 1 ÎŒL Crude Cerebrospinal Fluid by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Can Differentiate De Novo Parkinson's Disease
  • 2023
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 95:50, s. 18352-18360
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) is a highly prevalent neurodegenerative disorder affecting the motor system. However, the correct diagnosis of PD and atypical parkinsonism may be difficult with high clinical uncertainty. There is an urgent need to identify reliable biomarkers using high-throughput, molecular-specific methods to improve current diagnostics. Here, we present a matrix-assisted laser desorption/ionization mass spectrometry imaging method that requires minimal sample preparation and only 1 mu L of crude cerebrospinal fluid (CSF). The method enables analysis of hundreds of samples in a single experiment while simultaneously detecting numerous metabolites with subppm mass accuracy. To test the method, we analyzed CSF samples from 12 de novo PD patients (that is, newly diagnosed and previously untreated) and 12 age-matched controls. Within the identified molecules, we found neurotransmitters and their metabolites such as gamma-aminobutyric acid, 3-methoxytyramine, homovanillic acid, serotonin, histamine, amino acids, and metabolic intermediates. Limits of detection were estimated for multiple neurotransmitters with high linearity (R-2 > 0.99) and sensitivity (as low as 16 pg/mu L). Application of multivariate classification led to a highly significant (P < 0.001) model of PD prediction with a 100% classification rate, which was further thoroughly validated with a permutation test and univariate analysis. Molecules related to the neuromelanin pathway were found to be significantly increased in the PD group, indicated by their elevated relative intensities compared to the control group. Our method enables rapid detection of PD-related biomarkers in low sample volumes and could serve as a valuable tool in the development of robust PD diagnostics.
  •  
5.
  • Aerts, Jordan (författare)
  • Capillary electrophoresis mass spectrometry applied to structural proteomics and small molecule analysis
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Capillary electrophoresis with mass spectrometric (CE–MS) detection offers a separation method without equal in terms of flexibility, utility, and cost efficiency. Here we demonstrate precisely this through the application of several laboratory-built CE–MS instruments for the separation of brain metabolites in non-primates, enantioselective separations of synthetic anesthetic metabolites in fractionated pony urine, application in structural proteomics workflows, and identification of exogenous alkaloid biotransformationproducts in human cerebrospinal fluid (CSF).We outline a method for quickly and affordably etching austenitic steel tubing, which is widely used in electrospray sources for CE–MS. The stainless steel tapered tip emitters provide robust electrospray with low sheath liquid flow rates and can be easily fabricated in-house, offering flexibility and cost-efficiency when commercial options areunavailable. We contribute a CE–MS method for enantiomer separation, specifically targeting 6-hydroxynorketamine (HNK). By introducing chiral selectors into the separation capillary, the method enables efficient enantiomer separation and offers a newtool to assist with research on HNK as a cure for depression.We explore the feasibility of cold CE–MS in hydrogen deuterium exchange workflows. The utilization of a lab-designed Peltier-cooled CE device achieves deuterium back exchange rates on par with commercial liquid chromatography-based platforms, offering new possibilities for studying protein structures and interactions.We also demonstrate the wide ranging versatility of CE–MS with contributions to the identification of specific tobacco related metabolites in CSF samples during the development of a high throughput mass spectrometry diagnostic tool for Parkinson’sDisease.This thesis showcases the versatility and value of CE–MS in various applications, a true blessing for analytical chemistry.
  •  
6.
  • Aerts, Jordan, et al. (författare)
  • Electrochemically Etched Tapered-Tip Stainless-Steel Electrospray-Ionization Emitters for Capillary Electrophoresis-Mass Spectrometry
  • 2023
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 22:4, s. 1377-1380
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used household consumables to facilitate electrochemical etching of stainless-steel hypodermic tubing to produce tapered-tip emitters suitable for electrospray ionization for use in mass spectrometry. The process involves the use of 1% oxalic acid and a 5 W USB power adapter, commonly known as a phone charger. Further, our method avoids the otherwise commonly used strong acids that entail chemical hazards: concentrated HNO3 for etching stainless steel, or concentrated HF for etching fused silica. Hence, we here provide a convenient and self-inhibiting procedure with minimal chemical hazards to manufacture tapered-tip stainless-steel emitters. We show its performance in metabolomic analysis with CE-MS of a tissue homogenate where the metabolites acetylcarnitine, arginine, carnitine, creatine, homocarnosine, and valerylcarnitine were identified, all with basepeak separated electropherograms, within <6 min of separation. The mass spectrometry data are freely available through the MetaboLight public data repository via access number MTBLS7230.
  •  
7.
  • Aerts, Jordan, et al. (författare)
  • Zero-Degree Celsius Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry
  • 2023
  • Ingår i: Analytical Chemistry. - : Springer Nature. - 0003-2700 .- 1520-6882. ; 95:2, s. 1149-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently, fast liquid chromatographic separations at low temperatures are exclusively used for the separation of peptides generated in hydrogen deuterium exchange (HDX) workflows. However, it has been suggested that capillary electrophoresis may be a better option for use with HDX. We performed in solution HDX on peptides and bovine hemoglobin (Hb) followed by quenching, pepsin digestion, and cold capillary electrophoretic separation coupled with mass spectrometry (MS) detection for benchmarking a laboratory-built HDX–MS platform. We found that capillaries with a neutral coating to eliminate electroosmotic flow and adsorptive processes provided fast separations with upper limit peak capacities surpassing 170. In contrast, uncoated capillaries achieved 30% higher deuterium retention for an angiotensin II peptide standard owing to faster separations but with only half the peak capacity of coated capillaries. Data obtained using two different separation conditions on peptic digests of Hb showed strong agreement of the relative deuterium uptake between methods. Processed data for denatured versus native Hb after deuterium labeling for the longest timepoint in this study (50,000 s) also showed agreement with subunit interaction sites determined by crystallographic methods. All proteomic data are available under DOI: 10.6019/PXD034245.
  •  
8.
  • Sandbaumhüter, Friederike A., et al. (författare)
  • Enantioselective CE–MS analysis of ketamine metabolites in urine
  • 2023
  • Ingår i: Electrophoresis. - : Wiley-VCH Verlagsgesellschaft. - 0173-0835 .- 1522-2683. ; 44:1-2, s. 125-134
  • Tidskriftsartikel (refereegranskat)abstract
    • The chiral drug ketamine has long-lasting antidepressant effects with a fast onset and is also suitable to treat patients with therapy-resistant depression. The metabolite hydroxynorketamine (HNK) plays an important role in the antidepressant mechanism of action. Hydroxylation at the cyclohexanone ring occurs at positions 4, 5, and 6 and produces a total of 12 stereoisomers. Among those, the four 6HNK stereoisomers have the strongest antidepressant effects. Capillary electrophoresis with highly sulfated γ-cyclodextrin (CD) as a chiral selector in combination with mass spectrometry (MS) was used to develop a method for the enantioselective analysis of HNK stereoisomers with a special focus on the 6HNK stereoisomers. The partial filling approach was applied in order to avoid contamination of the MS with the chiral selector. Concentration of the chiral selector and the length of the separation zone were optimized. With 5% highly sulfated γ-CD in 20 mM ammonium formate with 10% formic acid and a 75% filling the four 6HNK stereoisomers could be separated with a resolution between 0.79 and 3.17. The method was applied to analyze fractionated equine urine collected after a ketamine infusion and to screen the fractions as well as unfractionated urine for the parent drug ketamine and other metabolites, including norketamine and dehydronorketamine.
  •  
9.
  • Sandbaumhuter, Friederike A., et al. (författare)
  • Label-Free Quantitative Thermal Proteome Profiling Reveals Target Transcription Factors with Activities Modulated by MC3R Signaling
  • 2023
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 95:41, s. 15400-15408
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal proteome profiling with label-free quantitation using ion-mobility-enhanced LC-MS offers versatile data sets, providing information on protein differential expression, thermal stability, and the activities of transcription factors. We developed a multidimensional data analysis workflow for label-free quantitative thermal proteome profiling (TPP) experiments that incorporates the aspects of gene set enrichment analysis, differential protein expression analysis, and inference of transcription factor activities from LC-MS data. We applied it to study the signaling processes downstream of melanocortin 3 receptor (MC3R) activation by endogenous agonists derived from the proopiomelanocortin prohormone: ACTH, alpha-MSH, and gamma-MSH. The obtained information was used to map signaling pathways downstream of MC3R and to deduce transcription factors responsible for cellular response to ligand treatment. Using our workflow, we identified differentially expressed proteins and investigated their thermal stability. We found in total 298 proteins with altered thermal stability, resulting from MC3R activation. Out of these, several proteins were transcription factors, indicating them as being downstream target regulators that take part in the MC3R signaling cascade. We found transcription factors CCAR2, DDX21, HMGB2, SRSF7, and TET2 to have altered thermal stability. These apparent target transcription factors within the MC3R signaling cascade play important roles in immune responses. Additionally, we inferred the activities of the transcription factors identified in our data set. This was done with Bayesian statistics using the differential expression data we obtained with label-free quantitative LC-MS. The inferred transcription factor activities were validated in our bioinformatic pipeline by the phosphorylated peptide abundances that we observed, highlighting the importance of post-translational modifications in transcription factor regulation. Our multidimensional data analysis workflow allows for a comprehensive characterization of the signaling processes downstream of MC3R activation. It provides insights into protein differential expression, thermal stability, and activities of key transcription factors. All proteomic data generated in this study are publicly available at DOI: 10.6019/PXD039945.
  •  
10.
  • Stenum, Thomas Søndergaard, et al. (författare)
  • RNA interactome capture in Escherichia coli globally identifies RNA-binding proteins
  • 2023
  • Ingår i: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 51:9, s. 4572-4587
  • Tidskriftsartikel (refereegranskat)abstract
    • RNA-binding proteins (RPBs) are deeply involved in fundamental cellular processes in bacteria and are vital for their survival. Despite this, few studies have so far been dedicated to direct and global identification of bacterial RBPs. We have adapted the RNA interactome capture (RIC) technique, originally developed for eukaryotic systems, to globally identify RBPs in bacteria. RIC takes advantage of the base pairing potential of poly(A) tails to pull-down RNA-protein complexes. Overexpressing poly(A) polymerase I in Escherichia coli drastically increased transcriptome-wide RNA polyadenylation, enabling pull-down of crosslinked RNA-protein complexes using immobilized oligo(dT) as bait. With this approach, we identified 169 putative RBPs, roughly half of which are already annotated as RNA-binding. We experimentally verified the RNA-binding ability of a number of uncharacterized RBPs, including YhgF, which is exceptionally well conserved not only in bacteria, but also in archaea and eukaryotes. We identified YhgF RNA targets in vivo using CLIP-seq, verified specific binding in vitro, and reveal a putative role for YhgF in regulation of gene expression. Our findings present a simple and robust strategy for RBP identification in bacteria, provide a resource of new bacterial RBPs, and lay the foundation for further studies of the highly conserved RBP YhgF.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy