SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Andrade Talavera Y.) srt2:(2021)"

Search: WFRF:(Andrade Talavera Y.) > (2021)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andrade-Talavera, Y, et al. (author)
  • Ablation of p75NTR signaling strengthens gamma-theta rhythm interaction and counteracts Aβ-induced degradation of neuronal dynamics in mouse hippocampus in vitro
  • 2021
  • In: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 11:1, s. 212-
  • Journal article (peer-reviewed)abstract
    • Gamma and theta brain rhythms play important roles in cognition and their interaction can affect gamma oscillation features. Hippocampal theta oscillations depend on cholinergic and GABAergic input from the medial septum-diagonal band of Broca. These projecting neurons undergo degeneration during aging and maintain high levels of neurotrophin receptor p75 (p75NTR). p75NTR mediates both apoptosis and survival and its expression is increased in Alzheimer’s disease (AD) patients. Here, we investigate the importance of p75NTR for the cholinergic input to the hippocampus. Performing extracellular recordings in brain slices from p75NTR knockout mice (p75−/−) in presence of the muscarinic agonist carbachol, we find that gamma oscillation power and rhythmicity are increased compared to wild-type (WT) mice. Furthermore, gamma activity is more phase-locked to the underlying theta rhythm, which renders a stronger coupling of both rhythms. On the cellular level, we find that fast-spiking interneurons (FSNs) fire more synchronized to a preferred gamma phase in p75−/− mice. The excitatory input onto FSN is more rhythmic displaying a higher similarity with the concomitant gamma rhythm. Notably, the ablation of p75NTR counteracts the Aβ-induced degradation of gamma oscillations and its nesting within the underlying theta rhythm. Our results show that the lack of p75NTR signaling could promote stronger cholinergic modulation of the hippocampal gamma rhythm, suggesting an involvement of p75NTR in the downregulation of cognition-relevant hippocampal network dynamics in pathologies. Moreover, functional data provided here suggest p75NTR as a suitable target in the search for efficacious treatments to counteract the loss of cognitive function observed in amyloid-driven pathologies such as AD.
  •  
2.
  •  
3.
  • Arroyo-Garcia, LE, et al. (author)
  • Impaired spike-gamma coupling of area CA3 fast-spiking interneurons as the earliest functional impairment in the AppNL-G-F mouse model of Alzheimer's disease
  • 2021
  • In: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:10, s. 5557-5567
  • Journal article (peer-reviewed)abstract
    • In Alzheimer’s disease (AD) the accumulation of amyloid-β (Aβ) correlates with degradation of cognition-relevant gamma oscillations. The gamma rhythm relies on proper neuronal spike-gamma coupling, specifically of fast-spiking interneurons (FSN). Here we tested the hypothesis that decrease in gamma power and FSN synchrony precede amyloid plaque deposition and cognitive impairment in AppNL-G-F knock-in mice (AppNL-G-F). The aim of the study was to evaluate the amyloidogenic pathology progression in the novel AppNL-G-F mouse model using in vitro electrophysiological network analysis. Using patch clamp of FSNs and pyramidal cells (PCs) with simultaneous gamma oscillation recordings, we compared the activity of the hippocampal network of wild-type mice (WT) and the AppNL-G-F mice at four disease stages (1, 2, 4, and 6 months of age). We found a severe degradation of gamma oscillation power that is independent of, and precedes Aβ plaque formation, and the cognitive impairment reported previously in this animal model. The degradation correlates with increased Aβ1-42 concentration in the brain. Analysis on the cellular level showed an impaired spike-gamma coupling of FSN from 2 months of age that correlates with the degradation of gamma oscillations. From 6 months of age PC firing becomes desynchronized also, correlating with reports in the literature of robust Aβ plaque pathology and cognitive impairment in the AppNL-G-F mice. This study provides evidence that impaired FSN spike-gamma coupling is one of the earliest functional impairment caused by the amyloidogenic pathology progression likely is the main cause for the degradation of gamma oscillations and consequent cognitive impairment. Our data suggests that therapeutic approaches should be aimed at restoring normal FSN spike-gamma coupling and not just removal of Aβ.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view