SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Angelini V.) srt2:(2015-2019)"

Sökning: WFRF:(Angelini V.) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aharonian, Felix, et al. (författare)
  • Detection of polarized gamma-ray emission from the Crab nebula with the Hitomi Soft Gamma-ray Detector
  • 2018
  • Ingår i: Publications of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 0004-6264 .- 2053-051X. ; 70:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from the Hitomi Soft Gamma-ray Detector (SGD) observation of the Crab nebula. The main part of SGD is a Compton camera, which in addition to being a spectrometer, is capable of measuring polarization of gamma-ray photons. The Crab nebula is one of the brightest X-ray / gamma-ray sources on the sky, and, the only source from which polarized X-ray photons have been detected. SGD observed the Crab nebula during the initial test observation phase of Hitomi. We performed the data analysis of the SGD observation, the SGD background estimation and the SGD Monte Carlo simulations, and, successfully detected polarized gamma-ray emission from the Crab nebula with only about 5 ks exposure time. The obtained polarization fraction of the phase-integrated Crab emission (sum of pulsar and nebula emissions) is (22.1% +/- 10.6%), and, the polarization angle is 110.degrees 7 + 13.degrees 2 /-13.degrees 0 in the energy range of 60-160 keV (The errors correspond to the 1 sigma deviation). The confidence level of the polarization detection was 99.3%. The polarization angle measured by SGD is about one sigma deviation with the projected spin axis of the pulsar, 124.degrees 0 +/- 0.degrees 1.
  •  
3.
  • Aharonian, Felix, et al. (författare)
  • Solar abundance ratios of the iron-peak elements in the Perseus cluster
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7681, s. 478-
  • Tidskriftsartikel (refereegranskat)abstract
    • The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae(1). Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode(2-6). Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun(7-11), suggesting differences between the nature of type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations(12-14) disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near-and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment(5,15,16).
  •  
4.
  • Madhvani, Roshni V., et al. (författare)
  • Targeting the Late Component of the Cardiac L-type Ca2+ Current to Suppress Early Afterdepolarizations
  • 2015
  • Ingår i: The Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 145:5, s. 395-404
  • Tidskriftsartikel (refereegranskat)abstract
    • Early afterdepolarizations (EADs) associated with prolongation of the cardiac action potential (AP) can create heterogeneity of repolarization and premature extrasystoles, triggering focal and reentrant arrhythmias. Because the L-type Ca2+ current (ICa,L) plays a key role in both AP prolongation and EAD formation, L-type Ca2+ channels (LTCCs) represent a promising therapeutic target to normalize AP duration (APD) and suppress EADs and their arrhythmogenic consequences. We used the dynamic-clamp technique to systematically explore how the biophysical properties of LTCCs could be modified to normalize APD and suppress EADs without impairing excitation–contraction coupling. Isolated rabbit ventricular myocytes were first exposed to H2O2 or moderate hypokalemia to induce EADs, after which their endogenous ICa,L was replaced by a virtual ICa,L with tunable parameters, in dynamic-clamp mode. We probed the sensitivity of EADs to changes in the (a) amplitude of the noninactivating pedestal current; (b) slope of voltage-dependent activation; (c) slope of voltage-dependent inactivation; (d) time constant of voltage-dependent activation; and (e) time constant of voltage-dependent inactivation. We found that reducing the amplitude of the noninactivating pedestal component of ICa,L effectively suppressed both H2O2- and hypokalemia-induced EADs and restored APD. These results, together with our previous work, demonstrate the potential of this hybrid experimental–computational approach to guide drug discovery or gene therapy strategies by identifying and targeting selective properties of LTCC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy