SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ansell Anders Professor) srt2:(2005-2009)"

Sökning: WFRF:(Ansell Anders Professor) > (2005-2009)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Malm, Richard, 1980- (författare)
  • Predicting shear type crack initiation and growth in concrete with non-linear finite element method
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    •   In this thesis, the possibility to numerically describing the behaviour that signifies shear type cracking in concrete is studied. Different means for describing cracking are evaluated where both methods proposed in design codes based on experiments and advanced finite element analyses with a non-linear material description are evaluated. It is shown that there is a large difference in the estimation of the crack width based on the calculation methods in design codes. The large difference occurs due to several of these methods do not account for shear friction in the crack face. The finite element method is an important tool for analysing the non-linear behaviour caused by cracking. It is especially of importance when combined with experimental investigations for evaluating load bearing capacity or establishing the structural health. It is shown that non-linear continuum material models can successfully be used to accurately describe the shear type cracking in concrete. A method based on plasticity and damage theory was shown to provide accurate estimations of the behaviour. The methods based on fracture mechanics with or without inclusion of damage theory, overestimated the stiffness after crack initiation considerably. The rotated crack approach of these methods gave less accurate descriptions of the crack pattern and underestimated the crack widths. After verification of the material model, realistic finite element models based on plasticity and damage theory are developed to analyse the cause for cracking in two large concrete structures. The Storfinnforsen hydropower buttress dam is evaluated where the seasonal temperature variation in combination with the water pressure have resulted in cracking. With the numerical model the cause for cracking can be explained and the crack pattern found in-situ is accurately simulated. The model is verified against measurements of variation in crest displacement and crack width with close agreement. The construction process of a balanced cantilever bridge, Gröndal Bridge, is numerically simulated and a rational explanation of the cause for cracking is presented. It is shown that large stresses and micro-cracks develop in the webs during construction, especially after tensioning the continuing tendons in the bottom flange. Further loads from temperature variation cause cracking in the webs that is in close agreement with the cracking found in-situ. The effect of strengthening performed on this bridge is also evaluated where the vertical Dywidag tendons so far seem to have been successful in stopping further crack propagation.  
  •  
2.
  • Magnusson, Johan (författare)
  • Structural concrete elements subjected to air blast loading
  • 2007
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the design of structures to resist the effects of air blast loading or other severe dynamic loads it is vital to have large energy absorbing capabilities, and structural elements with large plastic deformation capacities are therefore desirable. Structures need to be designed for ductile response in order to prevent partial or total collapse due to locally failed elements. The research in this thesis considers experimental and theoretical studies on concrete beams of varying concrete strength. The nominal concrete compressive strength varied between 30 MPa and 200 MPa. A total of 89 beams were tested of which 49 beams were reinforced with varying amounts of tensile reinforcement. These beams were also reinforced with stirrups and steel fibres were added to a few beams. The remaining 40 beams were only reinforced with steel fibres with a fibre content of 1.0 percent by volume. Two different fibre lengths having constant length-to-diameter ratio were employed. The tests consisted of both static and air blast tests on simply supported beams. The blast tests were performed within a shock tube with a detonating explosive charge. All experimental research focused on deflection events, failure modes and loads transferred to the supports. The dynamic analyses involve single-degree-of-freedom (SDOF) modelling of the beam response and the use of iso-damage curves. Also, the dynamic support reactions were calculated and compared with test results. For beams with tensile reinforcement, the failure mode of some beam types was observed to change from a flexural failure in the static tests to a flexural shear failure in the dynamic tests. Beams with a high ratio of reinforcement and not containing steel fibres failed in shear, whereas beams with a lower ratio of reinforcement failed in flexure. The introduction of steel fibres prevented shear cracks to develop, thus increasing the shear strength of the beams. The presence of steel fibres also increased the ductility and the residual load capacity of the beams. Beams subjected to air blast loading obtained an increased load capacity when compared to the corresponding beams subjected to static loading. The SDOF analyses showed good agreement with the experimental results regardless of concrete strength and reinforcement amount. The results of using iso-damage curves indicate conservative results with larger load capacities of the beams than expected. The theoretical evaluations of the dynamic reactions were in agreement with the measured average reactions, both in amplitudes and in general shape. The experimental results with steel fibre reinforced concrete beams indicate that the dynamic strength was higher than the corresponding static strength and that the toughness was reduced when increasing the compressive strength. Beams of normal strength concrete failed by fibre pull-out while a few beams of high strength concrete partly failed by fibre ruptures. It may be favourable to use shorter fibres with smaller aspect ratios in structural elements of high strength concrete and subjected to large dynamic loads. Further research should involve studies on the size effect, on different boundary conditions, on different types of structural elements and on the combination of blast and fragment loads. The theoretical work should involve analyses both with the use of SDOF modelling and finite element analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy