SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arora Prakhar 1987) srt2:(2021)"

Sökning: WFRF:(Arora Prakhar 1987) > (2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arora, Prakhar, 1987, et al. (författare)
  • The role of catalyst poisons during hydrodeoxygenation of renewable oils
  • 2021
  • Ingår i: Catalysis Today. - : Elsevier BV. - 0920-5861. ; 367, s. 28-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrodeoxygenation (HDO) activity of NiMo catalysts have been evaluated in the presence of catalyst poisons in bio-based feedstocks. An in-house synthesized NiMo/Al2O3 catalyst was placed in a refinery unit for biofuel production. Iron (Fe), phosphorus (P) and metals were identified as major contaminants. Calcination treatment was explored to recover the activity of spent catalysts. The effect of Fe, K and phospholipid containing P and Na on catalyst deactivation during hydrodeoxygenation of stearic acid was simulated at lab-scale. Fe caused the most deactivation where the highest feed concentration of the Fe compound resulted in 1480 ppm Fe deposited on the catalyst. Elemental distribution along the radial axis of spent catalysts indicated: Fe deposited only to a depth of 100 μm irrespective of concentration while P and Na from phospholipid and K penetrated deeper in catalyst particles with a distribution profile that was found to be concentration dependent.
  •  
2.
  • Cheah, You Wayne, 1993, et al. (författare)
  • Role of transition metals on MoS 2 -based supported catalysts for hydrodeoxygenation (HDO) of propylguaiacol
  • 2021
  • Ingår i: Sustainable Energy and Fuels. - : Royal Society of Chemistry (RSC). - 2398-4902. ; 5:7, s. 2097-2113
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal sulfides (TMSs) are typically used in the traditional petroleum refining industry for hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) applications. Bio-oils require an upgrading process like catalytic hydrodeoxygenation (HDO) to produce advanced biofuels and chemicals. Herein, MoS /γ-Al O promoted by transition metals like nickel (Ni), copper (Cu), zinc (Zn), and iron (Fe) was evaluated for the HDO of a bio-oil model compound, 4-propylguaiacol (PG) in a batch reactor at 340 °C under 50 bar H pressure. The catalyst screening results showed that the sulfided Ni-promoted catalyst gave a high 94% yield of deoxygenated cycloalkanes, however for the sulfided Cu-promoted catalyst, 42% of phenolics remain in the reaction medium after 5 h. The results also revealed that the sulfided Zn and Fe-promoted catalysts gave a final yield of 16% and 19% at full PG conversion, respectively, for deoxygenated aromatics. A kinetic model considering the main side reactions was developed to elucidate the reaction pathway of demethoxylation and dehydroxylation of PG. The developed kinetic model was able to describe the experimental results well with a coefficient of determination of 97% for the Ni-promoted catalyst system. The absence of intermediates like 4-propylcyclohexanone and 4-propylcyclohexanol during the reaction implies that direct deoxygenation (DDO) is the dominant pathway in the deoxygenation of PG employing sulfided catalysts. The current work also demonstrated that the activity of the transition metal promoters sulfides for HDO of PG could be correlated to the yield of deoxygenated products from the hydrotreatment of Kraft lignin. 2 2 3 2
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy