SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ayala Ana I) srt2:(2023)"

Sökning: WFRF:(Ayala Ana I) > (2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ayala, Ana I., et al. (författare)
  • Climate Change Impacts on Surface Heat Fluxes in a Deep Monomictic Lake
  • 2023
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 128:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulent and radiative energy exchanges between lakes and the atmosphere play an importantrole in determining the process of lake-mixing and stratification, including how lakes respond to climate andto climate change. Here we used a one-dimensional hydrodynamic lake model to assess seasonal impacts ofclimate change on individual surface heat flux components in Lough Feeagh, Ireland, a deep, monomictic lake.We drove the lake model with an ensemble of outputs from four climate models under three future greenhousegas scenarios from 1976 to 2099. In these experiments, the results showed significant increases in the radiativebudget that were largely counteracted by significant increases in the turbulent fluxes. The combined change inthe individual surface heat fluxes led to a change in the total surface heat flux that was small, but sufficient tolead to significant changes in the volume-weighted average lake temperature. The largest projected changes intotal surface heat fluxes were in spring and autumn. Both spring heating and autumnal cooling significantlydecreased under future climate conditions, while changes to total surface heat fluxes in winter and summerwere an order of magnitude lower. This led to counter-intuitive results that, in a warming world, there wouldbe less heat not more entering Lough Feeagh during the springtime, and little change in net heating over thesummer or winter compared to natural climate conditions, projected increases in the volume-weighted averagelake temperature were found to be largely due to reduced heat loss during autumn.
  •  
2.
  • Ayala, Ana I., et al. (författare)
  • GLOBAL WARMING WILL CHANGE THE THERMAL STRUCTURE OF LOUGH FEEAGH, A SENTINEL LAKE IN THE IRISH LANDSCAPE, BY THE END OF THE TWENTY-FIRST CENTURY
  • 2023
  • Ingår i: Biology and Environment (Dublin). - : Project MUSE/Royal irish academy. - 0791-7945 .- 2009-003X. ; 123B:3, s. 147-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent developments in impact modelling of global warming on lakes have resulted in a greater understanding of how these vital ecosystems are likely to respond. However, there has been little quantitative analysis of this in an Irish context, despite the importance of lakes in the island's landscape. Here, we explore the impact of global warming on the hydrodynamics and thermal structure of a sentinel Irish lake under future climate scenarios. A 1D lake model, Simstrat, was calibrated and validated using water temperature data collected from Lough Feeagh, a site of long-term ecological research in the west of Ireland. Once validated, the model was then driven by daily climate model projections to generate informative thermal metrics for the time period of 2006-2099. Despite the moderating influence of the Atlantic, projections indicate that global warming will have a marked effect on the thermal structure of Feeagh, with surface water temperatures set to warm by 0.75 degrees C under a more stringent mitigation pathway (RCP 2.6) and 2.42 degrees C under a non-mitigation pathway (RCP 8.5).While warming was projected to be greatest in summer in the epilimnion, winter warming was greater than in other seasons in the hypolimnion. Stratification is projected to become more stable and earlier, and the growing season to be longer by 11 to 47 days, depending on mitigation pathways. Future studies could use a similar modelling workflow to investigate the possible implications of global warming on other Irish lakes, particularly those of specific societal importance or those of conservation interest.
  •  
3.
  • Ayala, Ana I. (författare)
  • Modelling impact climate-related change on the thermal responses of lakes
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In response to climate-related changes, lakes worldwide have experienced warmer surface water temperatures, shorter ice cover periods and changes in lake stratification. As these aspects of lake dynamics exert substantial control over nutrient availability, oxygenation and biogeochemical cycling, predicting changes in lake water temperature and stratification dynamics can improve our understanding of the consequences of warming on lake ecosystems. This thesis investigates the long-term and short-term (extreme event) effects of climate change on lake thermal dynamics using 1D hydrodynamic lake models.Long-term lake water temperature simulations showed that water temperatures and thermal stratification metrics were projected to clearly shift toward lake thermal conditions that are consistent with a warmer climate at the end of the 21st century, i.e. warmer surface and bottom temperatures and a stronger and longer duration of summer thermal stratification as a result of an earlier onset of stratification and later fall overturn. The simulated lake thermal structure was controlled by energy exchange between the lake surface and the atmosphere (surface heat fluxes) and wind stress. The individual surface heat flux components were projected to change substantially under future climate scenarios. However, the combined changes showed compensating effects, leading to a small overall change in total surface heat flux, that was still sufficient to lead to important changes in whole-lake temperature. On a seasonal scale, spring heating and autumnal cooling were projected to decrease, while only small changes were projected in winter and summer. An extended analysis during summer using 47 lakes showed that while all lakes gained heat during summer under all scenarios, differences in the amount of heat gained during historical and future conditions were small. Additionally, hydrodynamic lake models performed well in reproducing the magnitude and direction of changes in lake temperature and stratification metrics during storms and heatwaves. However, the lake model performance decreased in accuracy compared to non-extreme condition, which should be taken into account. 1D hydrodynamic lake models have been shown to be powerful tools to predict long-term and short-term climate-related changes in lake thermal dynamics, making an in-depth analysis of the surface heat fluxes possible. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy