SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(B Carlborg) srt2:(2005-2009)"

Sökning: WFRF:(B Carlborg) > (2005-2009)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Gjuvsland, Arne B., et al. (författare)
  • Statistical epistasis is a generic feature of gene regulatory networks
  • 2007
  • Ingår i: Genetics. - : Oxford University Press (OUP). - 0016-6731 .- 1943-2631. ; 175:1, s. 411-420
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional dependencies between genes are a defining characteristic of gene networks underlying quantitative traits. However, recent studies show that the proportion of the genetic variation that can be attributed to statistical epistasis varies from almost zero to very high. It is thus of fundamental as well as instrumental importance to better understand whether different functional dependency patterns among polymorphic genes give rise to distinct statistical interaction patterns or not. Here we address this issue by combining a quantitative genetic model approach with genotype-phenotype models capable of translating allelic variation and regulatory principles into phenotypic variation at the level of gene expression. We show that gene regulatory networks with and without feedback motifs can exhibit a wide range of possible statistical genetic architectures with regard to both type of effect explaining phenotypic variance and number of apparent loci underlying the observed phenotypic effect. Although all motifs are capable of harboring significant interactions, positive feedback gives rise to higher amounts and more types of statistical epistasis. The results also suggest that the inclusion of statistical interaction terms in genetic models will increase the chance to detect additional QTL as well as functional dependencies between genetic loci over a broad range of regulatory regimes. This article illustrates how statistical genetic methods can fruitfully be combined with nonlinear systems dynamics to elucidate biological issues beyond reach of each methodology in isolation.
  •  
4.
  • Gylfason, Kristinn B., 1978-, et al. (författare)
  • A packaged optical slot-waveguide ring resonator sensor array for multiplex assays in labs-on-chip
  • 2009
  • Ingår i: Proceedings of Conference, MicroTAS 2009 - The 13th International Conference on Miniaturized Systems for Chemistry and Life Sciences. - : Chemical and Biological Microsystems Society. - 9780979806421 ; , s. 2004-2006
  • Konferensbidrag (refereegranskat)abstract
    • We present the design, fabrication, and characterization of a packaged array of individually addressable slot-waveguide ring resonator sensors in a compact cartridge for sensitive, label-free, multiplex assays. The novel use of a dual surfaceenergy adhesive film enables simple generic packaging method for multiple sensors in a single cartridge. The use of optical slot-waveguides, and drift compensation by on-chip light splitting to reference sensors, gives the best refractive-index limit of detection reported for planar ring resonator sensors.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Le Rouzic, Arnaud, et al. (författare)
  • Phenotypic evolution from genetic polymorphisms in a radial network architecture
  • 2007
  • Ingår i: BMC Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 5, s. 50-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The genetic architecture of a quantitative trait influences the phenotypic response to natural or artificial selection. One of the main objectives of genetic mapping studies is to identify the genetic factors underlying complex traits and understand how they contribute to phenotypic expression. Presently, we are good at identifying and locating individual loci with large effects, but there is a void in describing more complex genetic architectures. Although large networks of connected genes have been reported, there is an almost complete lack of information on how polymorphisms in these networks contribute to phenotypic variation and change. To date, most of our understanding comes from theoretical, model-based studies, and it remains difficult to assess how realistic their conclusions are as they lack empirical support. Results: A previous study provided evidence that nearly half of the difference in eight-week body weight between two divergently selected lines of chickens was a result of four loci organized in a 'radial' network (one central locus interacting with three 'radial' loci that, in turn, only interacted with the central locus). Here, we study the relationship between phenotypic change and genetic polymorphism in this empirically detected network. We use a model-free approach to study, through individual-based simulations, the dynamic properties of this polymorphic and epistatic genetic architecture. The study provides new insights to how epistasis can modify the selection response, buffer and reveal effects of major loci leading to a progressive release of genetic variation. We also illustrate the difficulty of predicting genetic architecture from observed selection response, and discuss mechanisms that might lead to misleading conclusions on underlying genetic architectures from quantitative trait locus (QTL) experiments in selected populations. Conclusion: Considering both molecular (QTL) and phenotypic (selection response) data, as suggested in this work, provides additional insights into the genetic mechanisms involved in the response to selection. Such dissection of genetic architectures and in-depth studies of their ability to contribute to short-or long-term selection response represents an important step towards a better understanding of the genetic bases of complex traits and, consequently, of the evolutionary properties of populations.
  •  
9.
  • Wahlberg, Per, et al. (författare)
  • Genetic analysis of an F2 intercross between two chicken lines divergently selected for body-weight
  • 2009
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 10, s. 248-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: We have performed Quantitative Trait Loci (QTL) analysis of an F(2) intercross between two chicken lines divergently selected for juvenile body-weight. In a previous study 13 identified loci with effects on body-weight, only explained a small proportion of the large variation in the F(2) population. Epistatic interaction analysis however, indicated that a network of interacting loci with large effect contributed to the difference in body-weight of the parental lines. This previous analysis was, however, based on a sparse microsatellite linkage map and the limited coverage could have affected the main conclusions. Here we present a revised QTL analysis based on a high-density linkage map that provided a more complete coverage of the chicken genome. Furthermore, we utilized genotype data from ~13,000 SNPs to search the genome for potential selective sweeps that have occurred in the selected lines. RESULTS: We constructed a linkage map comprising 434 genetic markers, covering 31 chromosomes but leaving seven microchromosomes uncovered. The analysis showed that seven regions harbor QTL that influence growth. The pair-wise interaction analysis identified 15 unique QTL pairs and notable is that nine of those involved interactions with a locus on chromosome 7, forming a network of interacting loci. The analysis of ~13,000 SNPs showed that a substantial proportion of the genetic variation present in the founder population has been lost in either of the two selected lines since ~60% of the SNPs polymorphic among lines showed fixation in one of the lines. With the current marker coverage and QTL map resolution we did not observe clear signs of selective sweeps within QTL intervals. CONCLUSION: The results from the QTL analysis using the new improved linkage map are to a large extent in concordance with our previous analysis of this pedigree. The difference in body-weight between the parental chicken lines is caused by many QTL each with a small individual effect. Although the increased chromosomal marker coverage did not lead to the identification of additional QTL, we were able to refine the localization of QTL. The importance of epistatic interaction as a mechanism contributing significantly to the remarkable selection response was further strengthened because additional pairs of interacting loci were detected with the improved map.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy