SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bale S D) srt2:(2005-2009)"

Sökning: WFRF:(Bale S D) > (2005-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eastwood, J. P., et al. (författare)
  • THEMIS observations of a hot flow anomaly : Solar wind, magnetosheath, and ground-based measurements
  • 2008
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 35:17, s. L17S03-
  • Tidskriftsartikel (refereegranskat)abstract
    • The THEMIS spacecraft encountered a Hot Flow Anomaly ( HFA) on the dusk flank of the Earth's bow shock on 4 July 2007, observing it on both sides of the shock. Meanwhile, the THEMIS ground magnetometers traced the progress of the associated Magnetic Impulse Event along the dawn flank of the magnetosphere, providing a unique opportunity to study the transmission of the HFA through the shock and the subsequent downstream response. THEMIS-A, in the solar wind, observed classic HFA signatures. Isotropic electron distributions inside the upstream HFA are attributed to the action of the electron firehose instability. THEMIS-E, just downstream, observed a much more complex disturbance with the pressure perturbation decoupled from the underlying discontinuity. Simple calculations show that the pressure perturbation would be capable of significantly changing the magnetopause location, which is confirmed by the ground-based observations.
  •  
2.
  • Chust, T., et al. (författare)
  • A low frequency receiver for the Solar Orbiter mission
  • 2006
  • Konferensbidrag (refereegranskat)abstract
    • The Low Frequency Receiver (LFR) is one of the main subsystems of the Radio and Plasma Wave (RPW) experiment that we wish to submit in response to a possible Announcement of Opportunity for the Solar Orbiter payload. It will be connected to two different sensor units: an electric antenna unit and a magnetic search coil unit that will be optimized to perform both quasi-DC and high frequency measurements. The LFR is dedicated to analyse and process onboard the low frequency signals from a fraction of a Hertz up to -10 kHz, covering in situ measurements of the electromagnetic waves of the solar wind and extended corona. Due to the telemetry constraints different strategies for analysing and transmitting the data have to be defined, implying different onboard working modes. The design and the technological characteristics of the LFR are presented.
  •  
3.
  • Wahlund, J E, et al. (författare)
  • Science opportunities with a double Langmuir probe and electric field experiment for JIMO
  • 2005
  • Ingår i: PLANETARY ATMOSPHERES, IONOSPHERES, AND MAGNETOSPHERES. - : Elsevier BV. ; , s. 2110-2119
  • Konferensbidrag (refereegranskat)abstract
    • The three icy Galilean moons of Jupiter: Callisto, Ganymede, and Europa, offer a range of exciting science opportunities for space physics and aeronomy. They all have thin atmospheres with residence times of a few days at most. The surface interactions with the space environment determine the atmospheric and ionospheric properties. The Jupiter Icy Moons Orbiter (JIMO) gives possibilities to investigate the weathering properties of their surfaces and volatile material expelled from their interiors. The atmospheres and the ionized ionospheric components of the Galilean moons (including the volcanic moon Io) interact strongly with the co-rotating magnetosphere of Jupiter. This interaction is dynamic and for example triggers energy transfer processes that give rise to auroral signatures at Jupiter. The icy moon's ionospheres are likewise highly variable in time and estimated peak electron densities vary between 1000 and 20,000 cm(-3) near their surfaces. A particularly interesting interaction occurs between the magnetosphere of Jupiter and the mini-magnetosphere of Ganymede and its ionosphere. A double-Langmuir probe (LP) experiment orbiting the moons at a short distance for several months will give valuable insight into these processes. Foremost the LP measures in situ plasma density and temperatures of the ionospheric components of the moons with high time resolution and thereby provides estimates of key parameters for the dynamical behaviour of surface weathering and magnetospheric influences. In addition many other physical parameters important to the dynamics of these systems can be estimated with such an instrument, like the plasma flow and the DC electric field. Recent results from the LP part of the Radio and Plasma Wave Science (RPWS) on board the Cassini/Huygens spacecraft orbiting Saturn show that an LP works in extended plasma parameter domains with very good science return.
  •  
4.
  • Bale, S. D., et al. (författare)
  • Antenna design considerations for the Radio and Plasma Wave (RPW) experiment on solar orbiter
  • 2006
  • Ingår i: European Space Agency, (Special Publication) ESA SP. - Athens. - 9290922052
  • Konferensbidrag (refereegranskat)abstract
    • Electric fields in the solar wind are very poorly studied; there have been no instruments dedicated to measuring solar wind electric fields and plasma waves at low frequencies. Here we discuss some of the important physics of LF electric fields, including dissipation of MHD turbulence, shock acceleration of particles, and solar wind magnetic reconnection. We then present some antenna sensor and instrument designs that will potentially satisfy the goal of measuring both DC/low frequency electric fields AND higher frequency radio and thermal noise emissions. We discuss trades between science goals and complexity of the designs.
  •  
5.
  • Vaivads, Andris, et al. (författare)
  • Low-frequency electric field and density fluctuation measurements on Solar Orbiter
  • 2007
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 39:9, s. 1502-1509
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar Orbiter will orbit the Sun down to a distance of 0.22 AU allowing detailed in situ studies of important but unexplored regions of the solar wind in combination with coordinated remote sensing of the Sun. In-situ measurements require high quality measurements of particle distributions and electric and magnetic fields. We show that such important scientific topics as the identification of coronal heating remnants, solar wind turbulence, magnetic reconnection and shock formation within coronal mass ejections all require electric field and plasma density measurements in the frequency range from DC up to about 100 Hz. We discuss how such measurements can be achieved using the double-probe technique. We sketch a few possible antenna design solutions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy