SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bathgate Ross A.D.) srt2:(2009)"

Sökning: WFRF:(Bathgate Ross A.D.) > (2009)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haugaard-Kedström (published under the name Haugaard-Jönsson), Linda M., et al. (författare)
  • Structural Properties of Relaxin Chimeras: NMR Characterization of the R3/I5 Relaxin Peptide
  • 2009
  • Ingår i: Annals of the New York Academy of Sciences. - : Wiley. - 0077-8923 .- 1749-6632. ; 1160, s. 27-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Relaxin-3 interacts with high potency with three relaxin family peptide receptors (RXFP1, RXFP3, and RXFP4). Therefore, the development of selective agonist and antagonist analogs is important for in vivo studies characterizing the biological significance of the different receptor-ligand systems and for future pharmaceutical applications. Recent reports demonstrated that a peptide selective for RXFP3 and RXFP4 over RXFP1 can be generated by the combination of the relaxin-3 B chain with the A chain from insulin-like peptide 5 (INSL5), creating an R3/I5 chimera. We have used NMR spectroscopy to determine the three-dimensional structure of this peptide to gain structural insights into the consequences of combining chains from two different relaxins. The R3/I5 structure reveals a similar backbone conformation for the relaxin-3 B chain compared to native relaxin-3, and the INSL5 A chain displays a relaxin/insulin-like fold with two parallel helices. The findings indicate that binding and activation of RXFP3 and RXFP4 mainly require the B chain and that the A chain functions as structural support. RXFP1, however, demonstrates a more complex binding mechanism, involving both the A chain and the B chain. The creation of chimeras is a promising strategy for generating new structure-activity data on relaxins.
  •  
2.
  • Hossain, M. Akhter, et al. (författare)
  • Solid phase synthesis and structural analysis of novel A-chain dicarba analogs of human relaxin-3 (INSL7) that exhibit full biological activity
  • 2009
  • Ingår i: Organic and biomolecular chemistry. - : Royal Society of Chemistry (RSC). - 1477-0520 .- 1477-0539. ; 7:8, s. 1547-1553
  • Tidskriftsartikel (refereegranskat)abstract
    • Replacement of disulfide bonds with non-reducible isosteres can be a useful means of increasing the in vivo stability of a protein. We describe the replacement of the A-chain intramolecular disulfide bond of human relaxin-3 (H3 relaxin, INSL7), an insulin-like peptide that has potential applications in the treatment of stress and obesity, with the physiologically stable dicarba bond. Solid phase peptide synthesis was used to prepare an A-chain analogue in which the two cysteine residues that form the intramolecular bond were replaced with allylglycine. On-resin microwave-mediated ring closing metathesis was then employed to generate the dicarba bridge. Subsequent cleavage of the peptide from the solid support, purification of two isomers and their combination with the B-chain via two intermolecular disulfide bonds, then furnished two isomers of dicarba-H3 relaxin. These were characterized by CD spectroscopy, which suggested a structural similarity to the native peptide. Additional analysis by solution NMR spectroscopy also identified the likely cis/trans form of the analogs. Both peptides demonstrated binding affinities that were equivalent to native H3 relaxin on RXFP1 and RXFP3 expressing cells. However, although the cAMP activity of the analogs on RXFP3 expressing cells was similar to the native peptide, the potency on RXFP1 expressing cells was slightly lower. The data confirmed the use of a dicarba bond as a useful isosteric replacement of the disulfide bond.
  •  
3.
  • Hossain, M. Akhter, et al. (författare)
  • The structural and functional role of the B-chain C-terminal arginine in the relaxin-3 peptide antagonist, R3(B Delta 23-27)R/I5.
  • 2009
  • Ingår i: Chemical Biology and Drug Design. - : Wiley. - 1747-0277 .- 1747-0285. ; 73:1, s. 46-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Relaxin-3, a member of the insulin superfamily, is involved in regulating stress and feeding behavior. It is highly expressed in the brain and is the endogenous ligand for the receptor RXFP3. As relaxin-3 also interacts with the relaxin receptor RXFP1, selective agonists and antagonists are crucial for studying the physiological function(s) of the relaxin-3/RXFP3 pair. The analog R3(B Delta 23-27)R/I5, in which a C-terminally truncated human relaxin-3 (H3) B-chain is combined with the INSL5 A-chain, is a potent selective RXFP3 antagonist and has an Arg residue remaining on the B-chain C-terminus as a consequence of the recombinant protein production process. To investigate the role of this residue in the RXFP3 receptor binding and activation, the analogs R3(B Delta 23-27)R/I5 and R3(B Delta 23-27)R containing the B-chain C-terminal Arg as well as R3(B Delta 23-27)/I5 and R3(B Delta 23-27), both lacking the Arg, were chemically assembled and their secondary structure and receptor activity assessed. The peptides generally had a similar conformation but those with the extra Arg residue displayed a significantly increased affinity for the RXFP3. Interestingly, in contrast to R3(B Delta 23-27)R and R3(B Delta 23-27)R/I5, the peptide R3(B Delta 23-27) is a weak agonist. This suggests that the C-terminal Arg, although increasing the affinity, alters the manner in which the peptide binds to the receptor and thereby prevents activation, giving R3(B Delta 23-27)R/I5 its potent antagonistic activity.
  •  
4.
  • Rosengren, K. Johan, et al. (författare)
  • Structural insights into the function of relaxins
  • 2009
  • Ingår i: Annals of the New York Academy of Sciences. - : Wiley. - 0077-8923 .- 1749-6632. ; 1160, s. 20-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The relaxin peptide hormones are members of the insulin superfamily and share a structural fold that is characterized by two peptide chains which are cross-braced by three disulfide bonds. On this framework, various amino acid side chains are presented, allowing specific interactions with different receptors. The relaxin receptors belong to two unrelated classes of G-protein-coupled receptors, but interestingly they are not selective for a single relaxin peptide. Relaxin-3, which is considered to be an extreme example of the relaxin family, can activate receptors from both classes and in fact interacts to some degree with all four receptors identified to date. To deduce how changes in the primary sequence can fine-tune the overall structure and thus the ability to interact with the various receptors, we have studied a range of relaxin-like peptides using solution nuclear magnetic resonance analysis. Three-dimensional structures of relaxin-3, insulin-like peptide 3 (INSL3), and INSL5 were determined and revealed a number of interesting features. All peptides showed a significant amount of line-broadening in certain regions, in particular around the intra-A-chain disulfide bond, suggesting that despite the disulfide bonds the fold is rather dynamic. Although the peptides share a common structural core there are significant differences, particularly around the termini. The structural data in combination with mutational studies provide valuable insights into the structure-activity relationships of relaxins.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy