SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bauden Monika) srt2:(2020-2024)"

Sökning: WFRF:(Bauden Monika) > (2020-2024)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferreira, Alexandra Gabriela, et al. (författare)
  • Restoring tumor immunogenicity with dendritic cell reprogramming
  • 2022
  • Ingår i: Cancer immunology research. - 2326-6074. ; 10:12 suppl
  • Konferensbidrag (refereegranskat)abstract
    • Immunotherapy is revolutionizing cancer treatment, but success is limited to a fraction of patients. Tumor immunosurveillance and immunotherapy relies on presentation of tumor-associated antigens by conventional dendritic cells type 1 (cDC1). However, tumors develop mechanisms to avoid immune recognition such as downregulation of antigen presentation and exclusion of cDC1. We have previously demonstrated that enforced expression of the transcription factors PU.1, IRF8 and BATF3 (PIB) imposes the lineage conversion of fibroblasts to cDC1 by direct cell reprogramming. Here, we hypothesize that PIB reprograms cancer cells directly into functional tumor-antigen presenting cells (tumor-APCs) with enhanced immunogenicity. First, we show that enforced expression of PIB in a wide range of murine and human cancer cells from different origins is sufficient to induce surface expression of hematopoietic and DC-lineage specific markers (CD45 and Clec9a). Moreover, reprogramming restored the expression of antigen presentation complexes (MHC-I and MHC-II) and activated the expression of the co-stimulatory molecules CD40, CD80 and CD86, required for productive T cell activation. Transcriptomic analysis using mRNA-sequencing showed that PIB imposes a global cDC1 gene signature and an antigen presentation program in tumor cells as early as day 3 of reprogramming, overriding the original cancer cell program. Furthermore, Assay for Transposase-Accessible Chromatin (ATAC) sequencing analysis revealed that PIB-mediated cDC1 reprogramming elicited rapid epigenetic remodeling followed by gradual rewiring of transcriptional program and stabilization of cDC1 identity. Functionally, tumor-APCs present endogenous antigens on MHC-I, prime naïve CD8+ T and become prone to CD8+ T cell mediated killing. Tumor-APCs secrete pro-inflammatory cytokines (IL-12) and chemoattractants (CXCL10), uptake and process exogenous antigens, phagocyte dead cells, and cross-present exogenous antigens to activate naïve T-cells. In addition, reprogrammed tumor cells harboring TP53, KRAS and PTEN mutations downregulated proliferation and showed impaired tumorigenicity in vitro and in vivo. Importantly, we show that intra-tumoral injection of reprogrammed tumor-APCs elicited tumour growth control in vivo alongside increasing infiltration of CD8+ T and NK cells in B16-OVA tumors. Finally, we showed that our approach can be employed to convert primary cancer cells derived from melanoma, lung, breast, pancreatic, urothelial, and head and neck carcinomas as well as cancer associated fibroblasts. In summary, we provide evidence for the direct reprogramming of tumor cells into immunogenic cDC1-like cells, with restored antigen presentation capacity and the ability to reinstate anti-tumor immunity. Our approach elicits the immune system against cancer and counteract major tumor evasion mechanisms including tumor heterogeneity and impaired antigen presentation, laying the foundation for developing immunotherapeutic strategies based on the cellular reprogramming of human cancer cells.
  •  
2.
  • Norrsell, Ragnar, et al. (författare)
  • L-type Amino Acid Transporter 1 as a Therapeutic Target in Pancreatic Cancer
  • 2024
  • Ingår i: Cancer Control. - 1073-2748. ; 31
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolic rewiring is a key feature of cancer cells to support the demands of growth and proliferation. The metabolism of amino acids is altered in many cancers, including pancreatic cancer. The cellular uptake of amino acids is regulated by amino acid transporters, such as L-type amino acid transporter 1 (LAT1). Accumulating evidence suggests that LAT1 is overexpressed in pancreatic cancer and confers a poor prognosis. Here we discuss the prospects of utilizing LAT1 as a novel target for pancreatic cancer therapy.
  •  
3.
  • Zhou, Qimin, et al. (författare)
  • YAP1 is an independent prognostic marker in pancreatic cancer and associated with extracellular matrix remodeling
  • 2020
  • Ingår i: Journal of Translational Medicine. - : Springer Science and Business Media LLC. - 1479-5876. ; 18, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Pancreatic cancer is a major cause of cancer-related mortality. The identification of effective biomarkers is essential in order to improve management of the disease. Yes-associated protein 1 (YAP1) is a downstream effector of the Hippo pathway, a signal transduction system implicated in tissue repair and regeneration, as well as tumorigenesis. Here we evaluate the biomarker potential of YAP1 in pancreatic cancer tissue.METHODS: YAP1 was selected as a possible biomarker for pancreatic cancer from global protein sequencing of fresh frozen pancreatic cancer tissue samples and normal pancreas controls. The prognostic utility of YAP1 was evaluated using mRNA expression data from 176 pancreatic cancer patients in The Cancer Genome Atlas (TCGA), as well as protein expression data from immunohistochemistry analysis of a local tissue microarray (TMA) cohort comprising 140 pancreatic cancer patients. Ingenuity Pathway Analysis was applied to outline the interaction network for YAP1 in connection to the pancreatic tumor microenvironment. The expression of YAP1 target gene products was evaluated after treatment of the pancreatic cancer cell line Panc-1 with three substances interrupting YAP-TEAD interaction, including Super-TDU, Verteporfin and CA3.RESULTS: Mass spectrometry based proteomics showed that YAP1 is the top upregulated protein in pancreatic cancer tissue when compared to normal controls (log2 fold change 6.4; p = 5E-06). Prognostic analysis of YAP1 demonstrated a significant correlation between mRNA expression level data and reduced overall survival (p = 0.001). In addition, TMA and immunohistochemistry analysis suggested that YAP1 protein expression is an independent predictor of poor overall survival [hazard ratio (HR) 1.870, 95% confidence interval (CI) 1.224-2.855, p = 0.004], as well as reduced disease-free survival (HR 1.950, 95% CI 1.299-2.927, p = 0.001). Bioinformatic analyses coupled with in vitro assays indicated that YAP1 is involved in the transcriptional control of target genes, associated with extracellular matrix remodeling, which could be modified by selected substances disrupting the YAP1-TEAD interaction.CONCLUSIONS: Our findings indicate that YAP1 is an important prognostic biomarker for pancreatic cancer and may play a regulatory role in the remodeling of the extracellular matrix.
  •  
4.
  • Zimmermannova, Olga, et al. (författare)
  • Restoring tumor immunogenicity with dendritic cell reprogramming
  • 2023
  • Ingår i: Science Immunology. - 2470-9468. ; 8:85
  • Tidskriftsartikel (refereegranskat)abstract
    • Decreased antigen presentation contributes to the ability of cancer cells to evade the immune system. We used the minimal gene regulatory network of type 1 conventional dendritic cells (cDC1) to reprogram cancer cells into professional antigen-presenting cells (tumor-APCs). Enforced expression of the transcription factors PU.1, IRF8, and BATF3 (PIB) was sufficient to induce the cDC1 phenotype in 36 cell lines derived from human and mouse hematological and solid tumors. Within 9 days of reprogramming, tumor-APCs acquired transcriptional and epigenetic programs associated with cDC1 cells. Reprogramming restored the expression of antigen presentation complexes and costimulatory molecules on the surfaces of tumor cells, allowing the presentation of endogenous tumor antigens on MHC-I and facilitating targeted killing by CD8 + T cells. Functionally, tumor-APCs engulfed and processed proteins and dead cells, secreted inflammatory cytokines, and cross-presented antigens to naïve CD8 + T cells. Human primary tumor cells could also be reprogrammed to increase their capability to present antigen and to activate patient-specific tumor-infiltrating lymphocytes. In addition to acquiring improved antigen presentation, tumor-APCs had impaired tumorigenicity in vitro and in vivo. Injection of in vitro generated melanoma-derived tumor-APCs into subcutaneous melanoma tumors delayed tumor growth and increased survival in mice. Antitumor immunity elicited by tumor-APCs was synergistic with immune checkpoint inhibitors. Our approach serves as a platform for the development of immunotherapies that endow cancer cells with the capability to process and present endogenous tumor antigens.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy