SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baumgartner Thomas) srt2:(2020-2022)"

Sökning: WFRF:(Baumgartner Thomas) > (2020-2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maier, Hannes, et al. (författare)
  • Consensus Statement on Bone Conduction Devices and Active Middle Ear Implants in Conductive and Mixed Hearing Loss
  • 2022
  • Ingår i: Otology and Neurotology. - : Lippincott, Williams & Wilkins. - 1531-7129 .- 1537-4505. ; 43:5, s. 513-529
  • Tidskriftsartikel (refereegranskat)abstract
    • Nowadays, several options are available to treat patients with conductive or mixed hearing loss. Whenever surgical intervention is not possible or contra-indicated, and amplification by a conventional hearing device (e.g., behind-the-ear device) is not feasible, then implantable hearing devices are an indispensable next option. Implantable bone-conduction devices and middle-ear implants have advantages but also limitations concerning complexity/invasiveness of the surgery, medical complications, and effectiveness. To counsel the patient, the clinician should have a good overview of the options with regard to safety and reliability as well as unequivocal technical performance data. The present consensus document is the outcome of an extensive iterative process including ENT specialists, audiologists, health-policy scientists, and representatives/technicians of the main companies in this field. This document should provide a first framework for procedures and technical characterization to enhance effective communication between these stakeholders, improving health care.
  •  
2.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
3.
  • Lewin, Harris A., et al. (författare)
  • The Earth BioGenome Project 2020 : Starting the clock
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 119:4
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
4.
  • Marinucci, A., et al. (författare)
  • Polarization constraints on the X-ray corona in Seyfert Galaxies : MCG-05-23-16
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 516:4, s. 5907-5913
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the first observation of a radio-quiet active galactic nucleus (AGN) in polarized X-rays: the Seyfert 1.9 galaxy MCG-05-23-16. This source was pointed at with the Imaging X-ray Polarimetry Explorer (IXPE) starting on 2022 May 14 for a net observing time of 486 ks, simultaneously with XMM-Newton (58 ks) and NuSTAR (83 ks). A polarization degree Π smaller than 4.7 per cent (at the 99 per cent confidence level) is derived in the 2–8 keV energy range, where emission is dominated by the primary component ascribed to the hot corona. The broad-band spectrum, inferred from a simultaneous fit to the IXPE, NuSTAR, and XMM-Newton data, is well reproduced by a power law with photon index Γ = 1.85 ± 0.01 and a high-energy cutoff EC = 120 ± 15 keV. A comparison with Monte Carlo simulations shows that a lamp-post and a conical geometry of the corona are consistent with the observed upper limit, a slab geometry is allowed only if the inclination angle of the system is less than 50°.
  •  
5.
  • Voegel, Clarissa D., et al. (författare)
  • Alterations of Stress-Related Glucocorticoids and Endocannabinoids in Hair of Chronic Cocaine Users
  • 2022
  • Ingår i: International Journal of Neuropsychopharmacology. - : Oxford University Press. - 1461-1457 .- 1469-5111. ; 25:3, s. 226-237
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Previous research in animals and humans has demonstrated a potential role of stress regulatory systems, such as the hypothalamic-pituitary-adrenal (HPA) axis and the endocannabinoid (eCB) system, in the development of substance use disorders. We thus investigated alterations of HPA and eCB markers in individuals with chronic cocaine use disorder by using an advanced hair analysis technique. Methods We compared hair concentrations of glucocorticoids (cortisone, cortisol) and the eCBs 2-arachidonylglycerol, anandamide (AEA), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA) between 48 recreational cocaine users (RCU), 25 dependent cocaine users (DCU), and 67 stimulant-naive controls. Self-reported substance use and hair concentrations of substances were also assessed. Results Significantly higher concentrations of hair cortisone were found in RCU and DCU compared with controls. Hair concentrations of OEA and PEA were significantly lower in DCU compared with RCU and controls. Additionally, within cocaine users, elevated cocaine hair concentration was a significant predictor for increased glucocorticoid and decreased OEA hair levels. Moreover, higher 3,4-methyl enedioxymethamphetamine hair concentration was correlated with elevated cortisone and AEA, OEA, and PEA levels in hair within cocaine users, whereas more self-reported cannabis use was associated with lower eCBs levels in hair across the total sample. Conclusion Our findings support the hypothesis that the HPA axis and eCB system might be important regulators for substance use disorders. The mechanistic understanding of changes in glucocorticoid and eCB levels in future research might be a promising pharmacological target to reduce stress-induced craving and relapse specifically in cocaine use disorder.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy