SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Benedet Andréa L.) srt2:(2022)"

Search: WFRF:(Benedet Andréa L.) > (2022)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ferrari-Souza, J. P., et al. (author)
  • Astrocyte biomarker signatures of amyloid-beta and tau pathologies in Alzheimer's disease
  • 2022
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27:11, s. 4781-4789
  • Journal article (peer-reviewed)abstract
    • Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-beta (A beta) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for A beta ([F-18]AZD4694) and tau ([F-18]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated A beta-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not A beta-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of A beta and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain A beta and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression.
  •  
2.
  • Mila-Aloma, M., et al. (author)
  • Plasma p-tau231 and p-tau217 as state markers of amyloid-beta pathology in preclinical Alzheimer's disease
  • 2022
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 28, s. 1797-1801
  • Journal article (peer-reviewed)abstract
    • A comprehensive comparison of Alzheimer's disease blood biomarkers in cognitively unimpaired individuals reveals that plasma p-tau231 and p-tau217 capture very early A beta changes, showing promise as markers to enrich a preclinical population for Alzheimer's disease clinical trials Blood biomarkers indicating elevated amyloid-beta (A beta) pathology in preclinical Alzheimer's disease are needed to facilitate the initial screening process of participants in disease-modifying trials. Previous biofluid data suggest that phosphorylated tau231 (p-tau231) could indicate incipient A beta pathology, but a comprehensive comparison with other putative blood biomarkers is lacking. In the ALFA+ cohort, all tested plasma biomarkers (p-tau181, p-tau217, p-tau231, GFAP, NfL and A beta 42/40) were significantly changed in preclinical Alzheimer's disease. However, plasma p-tau231 reached abnormal levels with the lowest A beta burden. Plasma p-tau231 and p-tau217 had the strongest association with A beta positron emission tomography (PET) retention in early accumulating regions and associated with longitudinal increases in A beta PET uptake in individuals without overt A beta pathology at baseline. In summary, plasma p-tau231 and p-tau217 better capture the earliest cerebral A beta changes, before overt A beta plaque pathology is present, and are promising blood biomarkers to enrich a preclinical population for Alzheimer's disease clinical trials.
  •  
3.
  • Tissot, C., et al. (author)
  • Comparing tau status determined via plasma pTau181, pTau231 and [18F]MK6240 tau-PET
  • 2022
  • In: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 76
  • Journal article (peer-reviewed)abstract
    • Background: Tau in Alzheimer's disease (AD) is assessed via cerebrospinal fluid (CSF) and Positron emission tomography (PET). Novel methods to detect phosphorylated tau (pTau) in blood have been recently developed. We aim to investigate agreement of tau status as determined by [18F]MK6240 tau-PET, plasma pTau181 and pTau231. Methods: We assessed cognitively unimpaired young, cognitively unimpaired, mild cognitive impairment and AD individuals with [18F]MK6240, plasma pTau181, pTau 231, [18F]AZD4694 amyloid-PET and MRI. A subset underwent CSF assessment. We conducted ROC curves to obtain cut-off values for plasma pTau epitopes. Individuals were categorized as positive or negative in all biomarkers. We then compared the distribution among concordant and discordant groups in relation to diagnosis, Aβ status, APOEε4 status, [18F]AZD4694 global SUVR, hippocampal volume and CSF pTau181. Findings: The threshold for positivity was 15.085 pg/mL for plasma pTau181 and 17.652 pg/mL for plasma pTau231. Most individuals had concordant statuses, however, 18% of plasma181/PET, 26% of plasma231/PET and 25% of the pTau231/pTau181 were discordant. Positivity to at least one biomarker was often accompanied by diagnosis of cognitive impairment, Aβ positivity, APOEε4 carriership, higher levels of [18F]AZD4694 global SUVR, hippocampal atrophy and CSF pTau181. Interpretation: Plasma pTau181, pTau231 and [18F]MK6240 seem to reflect different stages of tau progression. Plasma biomarkers can be useful in the context of diagnostic information and clinical trials, to evaluate the disease stage. Moreover, they seem to confidently evaluate tau-PET positivity. Funding: Moreover, this study was supported by Weston Brain Institute, Canadian Institute of Health Research and Fonds de Recherche du Québec. © 2022 The Authors
  •  
4.
  •  
5.
  • Salvado, G., et al. (author)
  • Reactive astrogliosis is associated with higher cerebral glucose consumption in the early Alzheimer's continuum
  • 2022
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 49, s. 4567-4579
  • Journal article (peer-reviewed)abstract
    • Purpose Glial activation is one of the earliest mechanisms to be altered in Alzheimer's disease (AD). Glial fibrillary acidic protein (GFAP) relates to reactive astrogliosis and can be measured in both cerebrospinal fluid (CSF) and blood. Plasma GFAP has been suggested to become altered earlier in AD than its CSF counterpart. Although astrocytes consume approximately half of the glucose-derived energy in the brain, the relationship between reactive astrogliosis and cerebral glucose metabolism is poorly understood. Here, we aimed to investigate the association between fluorodeoxyglucose ([F-18]FDG) uptake and reactive astrogliosis, by means of GFAP quantified in both plasma and CSF for the same participants. Methods We included 314 cognitively unimpaired participants from the ALFA + cohort, 112 of whom were amyloid-beta (A beta) positive. Associations between GFAP markers and [F-18]FDG uptake were studied. We also investigated whether these associations were modified by A beta and tau status (AT stages). Results Plasma GFAP was positively associated with glucose consumption in the whole brain, while CSF GFAP associations with [F-18]FDG uptake were only observed in specific smaller areas like temporal pole and superior temporal lobe. These associations persisted when accounting for biomarkers of A beta pathology but became negative in A beta-positive and tau-positive participants (A + T +) in similar areas of AD-related hypometabolism. Conclusions Higher astrocytic reactivity, probably in response to early AD pathological changes, is related to higher glucose consumption. With the onset of tau pathology, the observed uncoupling between astrocytic biomarkers and glucose consumption might be indicative of a failure to sustain the higher energetic demands required by reactive astrocytes.
  •  
6.
  • Therriault, Joseph, et al. (author)
  • Association of Phosphorylated Tau Biomarkers With Amyloid Positron Emission Tomography vs Tau Positron Emission Tomography.
  • 2022
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 80:2, s. 188-99
  • Journal article (peer-reviewed)abstract
    • The recent proliferation of phosphorylated tau (p-tau) biomarkers has raised questions about their preferential association with the hallmark pathologies of Alzheimer disease (AD): amyloid-β plaques and tau neurofibrillary tangles.To determine whether cerebrospinal fluid (CSF) and plasma p-tau biomarkers preferentially reflect cerebral β-amyloidosis or neurofibrillary tangle aggregation measured with positron emission tomography (PET).This was a cross-sectional study of 2 observational cohorts: the Translational Biomarkers in Aging and Dementia (TRIAD) study, with data collected between October 2017 and August 2021, and the Alzheimer's Disease Neuroimaging Initiative (ADNI), with data collected between September 2015 and November 2019. TRIAD was a single-center study, and ADNI was a multicenter study. Two independent subsamples were derived from TRIAD. The first TRIAD subsample comprised individuals assessed with CSF p-tau (p-tau181, p-tau217, p-tau231, p-tau235), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. The second TRIAD subsample included individuals assessed with plasma p-tau (p-tau181, p-tau217, p-tau231), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. An independent cohort from ADNI comprised individuals assessed with CSF p-tau181, [18F]florbetapir PET, and [18F]flortaucipir PET. Participants were included based on the availability of p-tau and PET biomarker assessments collected within 9 months of each other. Exclusion criteria were a history of head trauma or magnetic resonance imaging/PET safety contraindications. No participants who met eligibility criteria were excluded.Amyloid PET, tau PET, and CSF and plasma assessments of p-tau measured with single molecule array (Simoa) assay or enzyme-linked immunosorbent assay.Associations between p-tau biomarkers with amyloid PET and tau PET.A total of 609 participants (mean [SD] age, 66.9 [13.6] years; 347 female [57%]; 262 male [43%]) were included in the study. For all 4 phosphorylation sites assessed in CSF, p-tau was significantly more closely associated with amyloid-PET values than tau-PET values (p-tau181 difference, 13%; 95% CI, 3%-22%; P=.006; p-tau217 difference, 11%; 95% CI, 3%-20%; P=.003; p-tau231 difference, 15%; 95% CI, 5%-22%; P<.001; p-tau235 difference, 9%; 95% CI, 1%-19%; P=.02) . These results were replicated with plasma p-tau181 (difference, 11%; 95% CI, 1%-22%; P=.02), p-tau217 (difference, 9%; 95% CI, 1%-19%; P=.02), p-tau231 (difference, 13%; 95% CI, 3%-24%; P=.009), and CSF p-tau181 (difference, 9%; 95% CI, 1%-21%; P=.02) in independent cohorts.Results of this cross-sectional study of 2 observational cohorts suggest that the p-tau abnormality as an early event in AD pathogenesis was associated with amyloid-β accumulation and highlights the need for careful interpretation of p-tau biomarkers in the context of the amyloid/tau/neurodegeneration, or A/T/(N), framework.
  •  
7.
  • van Egmond, L. T., et al. (author)
  • Acute sleep loss increases CNS health biomarkers and compromises the ability to stay awake in a sex-and weight-specific manner
  • 2022
  • In: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Night shift work impairs vigilance performance, reduces the ability to stay awake, and compromises brain health. To investigate if the magnitude of these adverse night shift work effects differs between sexes and weight groups, 47 men and women with either normal weight or obesity participated in one night of sleep and one night of total sleep loss. During the night of sleep loss, participants' subjective sleepiness, vigilance performance, and ability to stay awake during 2-min quiet wake with eyes closed were repeatedly assessed. In addition, blood was collected in the morning after sleep loss and sleep to measure central nervous system (CNS) health biomarkers. Our analysis showed that women were sleepier during the night of sleep loss (P < 0.05) and spent more time in microsleep during quiet wake testing (P < 0.05). Finally, higher blood levels of neurofilament light chain, a biomarker of axonal damage, were found among women in the morning after sleep loss (P < 0.002). Compared with normal-weight subjects, those with obesity were more prone to fall asleep during quiet wake (P < 0.05) and exhibited higher blood levels of the CNS health biomarker pTau181 following sleep loss (P = 0.001). Finally, no differences in vigilance performance were noted between the sex and weight groups. Our findings suggest that the ability to stay awake during and the CNS health biomarker response to night shift work may differ between sexes and weight groups. Follow-up studies must confirm our findings under more long-term night shift work conditions.
  •  
8.
  • Ziff, O. J., et al. (author)
  • Amyloid processing in COVID-19-associated neurological syndromes
  • 2022
  • In: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 161:2, s. 146-157
  • Journal article (peer-reviewed)abstract
    • SARS-CoV-2 infection can damage the nervous system with multiple neurological manifestations described. However, there is limited understanding of the mechanisms underlying COVID-19 neurological injury. This is a cross-sectional exploratory prospective biomarker cohort study of 21 patients with COVID-19 neurological syndromes (Guillain–Barre Syndrome [GBS], encephalitis, encephalopathy, acute disseminated encephalomyelitis [ADEM], intracranial hypertension, and central pain syndrome) and 23 healthy COVID-19 negative controls. We measured cerebrospinal fluid (CSF) and serum biomarkers of amyloid processing, neuronal injury (neurofilament light), astrocyte activation (GFAp), and neuroinflammation (tissue necrosis factor [TNF] ɑ, interleukin [IL]-6, IL-1β, IL-8). Patients with COVID-19 neurological syndromes had significantly reduced CSF soluble amyloid precursor protein (sAPP)-ɑ (p=0.004) and sAPPβ (p=0.03) as well as amyloid β (Aβ) 40 (p=5.2×10−8), Aβ42 (p=3.5×10−7), and Aβ42/Aβ40 ratio (p=0.005) compared to controls. Patients with COVID-19 neurological syndromes showed significantly increased neurofilament light (NfL, p=0.001) and this negatively correlated with sAPPɑ and sAPPβ. Conversely, GFAp was significantly reduced in COVID-19 neurological syndromes (p=0.0001) and this positively correlated with sAPPɑ and sAPPβ. COVID-19 neurological patients also displayed significantly increased CSF proinflammatory cytokines and these negatively correlated with sAPPɑ and sAPPβ. A sensitivity analysis of COVID-19-associated GBS revealed a non-significant trend toward greater impairment of amyloid processing in COVID-19 central than peripheral neurological syndromes. This pilot study raises the possibility that patients with COVID-19-associated neurological syndromes exhibit impaired amyloid processing. Altered amyloid processing was linked to neuronal injury and neuroinflammation but reduced astrocyte activation. (Figure presented.) © 2022 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view