SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bergsåker Henrik) "

Search: WFRF:(Bergsåker Henrik)

  • Result 1-50 of 289
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersson Sundén, Erik, et al. (author)
  • An assessment of nitrogen concentrations from spectroscopic measurements in the JET and ASDEX upgrade divertor
  • 2019
  • In: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 18, s. 147-152
  • Journal article (peer-reviewed)abstract
    • The impurity concentration in the tokamak divertor plasma is a necessary input for predictive scaling of divertor detachment, however direct measurements from existing tokamaks in different divertor plasma conditions are limited. To address this, we have applied a recently developed spectroscopic N II line ratio technique for measuring the N concentration in the divertor to a range of H-mode and L-mode plasma from the ASDEX Upgrade and JET tokamaks, respectively. The results from both devices show that as the power crossing the separatrix, P-sep, is increased under otherwise similar core conditions (e.g. density), a higher N concentration is required to achieve the same detachment state. For example, the N concentrations at the start of detachment increase from approximate to 2% to approximate to 9% as P-sep, is increased from approximate to 2.5 MW to approximate to 7 MW. These results tentatively agree with scaling law predictions (e.g. Goldston et al.) motivating a further study examining the parameters which affect the N concentration required to reach detachment. Finally, the N concentrations from spectroscopy and the ratio of D and N gas valve fluxes agree within experimental uncertainty only when the vessel surfaces are fully-loaded with N.
  •  
2.
  • Angioni, C., et al. (author)
  • Dependence of the turbulent particle flux on hydrogen isotopes induced by collisionality
  • 2018
  • In: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674 .- 1070-6631 .- 1089-7666. ; 25:8
  • Journal article (peer-reviewed)abstract
    • The impact of the change of the mass of hydrogen isotopes on the turbulent particle flux is studied. The trapped electron component of the turbulent particle convection induced by collisionality, which is outward in ion temperature gradient turbulence, increases with decreasing thermal velocity of the isotope. Thereby, the lighter is the isotope, the stronger is the turbulent pinch, and the larger is the predicted density gradient at the null of the particle flux. The passing particle component of the flux increases with decreasing mass of the isotope and can also affect the predicted density gradient. This effect is however subdominant for usual core plasma parameters. The analytical results are confirmed by means of both quasi-linear and nonlinear gyrokinetic simulations, and an estimate of the difference in local density gradient produced by this effect as a function of collisionality has been obtained for typical plasma parameters at mid-radius. Analysis of currently available experimental data from the JET and the ASDEX Upgrade tokamaks does not show any clear and general evidence of inconsistency with this theoretically predicted effect outside the errorbars and also allows the identification of cases providing weak evidence of qualitative consistency.
  •  
3.
  • Bobkov, V, et al. (author)
  • Impact of ICRF on the scrape-off layer and on plasma wall interactions : From present experiments to fusion reactor
  • 2019
  • In: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 18, s. 131-140
  • Journal article (peer-reviewed)abstract
    • Recent achievements in studies of the effects of ICRF (Ion Cyclotron Range of Frequencies) power on the SOL (Scrape-Off Layer) and PWI (Plasma Wall Interactions) in ASDEX Upgrade (AUG), Alcator C-Mod, and JET-ILW are reviewed. Capabilities to diagnose and model the effect of DC biasing and associated impurity production at active antennas and on magnetic field connections to antennas are described. The experiments show that ICRF near-fields can lead not only to E x B convection, but also to modifications of the SOL density, which for Alcator C-Mod are limited to a narrow region near antenna. On the other hand, the SOL density distribution along with impurity sources can be tailored using local gas injection in AUG and JET-ILW with a positive effect on reduction of impurity sources. The technique of RF image current cancellation at antenna limiters was successfully applied in AUG using the 3-strap AUG antenna and extended to the 4-strap Alcator C-Mod field-aligned antenna. Multiple observations confirmed the reduction of the impact of ICRF on the SOL and on total impurity production when the ratio of the power of the central straps to the total antenna power is in the range 0.6 < P-cen / P-total < 0.8. Near-field calculations indicate that this fairly robust technique can be applied to the ITER ICRF antenna, enabling the mode of operation with reduced PWI. On the contrary, for the A2 antenna in JET-ILW the technique is hindered by RF sheaths excited at the antenna septum. Thus, in order to reduce the effect of ICRF power on PWI in a future fusion reactor, the antenna design has to be optimized along with design of plasmafacing components.
  •  
4.
  • Bombarda, F., et al. (author)
  • Runaway electron beam control
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Journal article (peer-reviewed)
  •  
5.
  • Bonanomi, N., et al. (author)
  • Role of fast ion pressure in the isotope effect in JET L-mode plasmas
  • 2019
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:9
  • Journal article (peer-reviewed)abstract
    • This paper presents results of JET ITER-like wall L-mode experiments in hydrogen and deuterium (D) plasmas, dedicated to the study of the isotope dependence of ion heat transport by determination of the ion critical gradient and stiffness by varying the ion cyclotron resonance heating power deposition. When no strong role of fast ions in the plasma core is expected, the main difference between the two isotope plasmas is determined by the plasma edge and the core behavior is consistent with a gyro-Bohm scaling. When the heating power (and the fast ion pressure) is increased, in addition to the difference in the edge region, also the plasma core shows substantial changes. The stabilization of ion heat transport by fast ions, clearly visible in D plasmas, appears to be weaker in H plasmas, resulting in a higher ion heat flux in H with apparent anti-gyro-Bohm mass scaling. The difference is found to be caused by the different fast ion pressure between H and D plasmas, related to the heating power settings and to the different fast ion slowing down time, and is completely accounted for in non-linear gyrokinetic simulations. The application of the TGLF quasi-linear model to this set of data is also discussed.
  •  
6.
  • Bravenec, R., et al. (author)
  • Benchmarking the GENE and GYRO codes through the relative roles of electromagnetic and E x B stabilization in JET high-performance discharges
  • 2016
  • In: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 58:12
  • Journal article (peer-reviewed)abstract
    • Nonlinear gyrokinetic simulations using the GENE code have previously predicted a significant nonlinear enhanced electromagnetic stabilization in certain JET discharges with high neutral-beam power and low core magnetic shear (Citrin et al 2013 Phys. Rev. Lett. 111 155001, 2015 Plasma Phys. Control. Fusion 57 014032). This dominates over the impact of E x B flow shear in these discharges. Furthermore, fast ions were shown to be a major contributor to the electromagnetic stabilization. These conclusions were based on results from the GENE gyrokinetic turbulence code. In this work we verify these results using the GYRO code. Comparing results (linear frequencies, eigenfunctions, and nonlinear fluxes) from different gyrokinetic codes as a means of verification (benchmarking) is only convincing if the codes agree for more than one discharge. Otherwise, agreement may simply be fortuitous. Therefore, we analyze three discharges, all with a carbon wall: a simplified, two-species, circular geometry case based on an actual JET discharge; an L-mode discharge with a significant fast-ion pressure fraction; and a low-triangularity high-beta hybrid discharge. All discharges were analyzed at normalized toroidal flux coordinate rho = 0.33 where significant ion temperature peaking is observed. The GYRO simulations support the conclusion that electromagnetic stabilization is strong, and dominates E x B shear stabilization.
  •  
7.
  • Cannas, Barbara, et al. (author)
  • Recurrence Plots for Dynamic Analysis of Type-I ELMs at JET With a Carbon Wall
  • 2019
  • In: IEEE Transactions on Plasma Science. - : Institute of Electrical and Electronics Engineers (IEEE). - 0093-3813 .- 1939-9375. ; 47:4, s. 1871-1877
  • Journal article (peer-reviewed)abstract
    • In this paper, the dynamic characteristics of type-I edge-localized modes (ELM) time series from the JET tokamak, the world's largest magnetic confinement plasma physics experiment, have been investigated through recurrence plots (RPs). The analysis has been focused on RPs of pedestal temperature, line averaged electron density, and outer divertor D-alpha time series during experiments with a carbon wall. The analysis of RPS shows the patterns similar to those characteristics of signals exhibiting type-2 intermittency, in particular, a characteristic kite-like shape; this gives useful hints to model the temperature signal as well as the D-alpha radiation time series, with simple nonlinear maps capturing the nearly periodic behavior of type-I ELMs.
  •  
8.
  • Carvalho, D. D., et al. (author)
  • Deep neural networks for plasma tomography with applications to JET and COMPASS
  • 2019
  • In: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 14
  • Journal article (peer-reviewed)abstract
    • Convolutional neural networks (CNNs) have found applications in many image processing tasks, such as feature extraction, image classification, and object recognition. It has also been shown that the inverse of CNNs, so-called deconvolutional neural networks, can be used for inverse problems such as plasma tomography. In essence, plasma tomography consists in reconstructing the 2D plasma profile on a poloidal cross-section of a fusion device, based on line-integrated measurements from multiple radiation detectors. Since the reconstruction process is computationally intensive, a deconvolutional neural network trained to produce the same results will yield a significant computational speedup, at the expense of a small error which can be assessed using different metrics. In this work, we discuss the design principles behind such networks, including the use of multiple layers, how they can be stacked, and how their dimensions can be tuned according to the number of detectors and the desired tomographic resolution for a given fusion device. We describe the application of such networks at JET and COMPASS, where at JET we use the bolometer system, and at COMPASS we use the soft X-ray diagnostic based on photodiode arrays.
  •  
9.
  • Chankin, A. , V, et al. (author)
  • EDGE2D-EIRENE simulations of the influence of isotope effects and anomalous transport coefficients on near scrape-off layer radial electric field
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:7
  • Journal article (peer-reviewed)abstract
    • EDGE2D-EIRENE (the 'code') simulations show that radial electric field, Er, in the near scrape-off layer (SOL) of tokamaks can have large variations leading to a strong local E x B shear greatly exceeding that in the core region. This was pointed out in simulations of JET plasmas with varying divertor geometry, where the magnetic configuration with larger predicted near SOL E-r was found to have lower H-mode power threshold, suggesting that turbulence suppression in the SOL by local E. x. B shear can be a player in the L-H transition physics (Delabie et al 2015 42nd EPS Conf. on Plasma Physics (Lisbon, Portugal, 22-26 June 2015) paper O3.113 (http://ocs.ciemat.es/EPS2015PAP/pdf/O3.113.pdf), Chankin et al 2017 Nucl. Mater. Energy 12 273). Further code modeling of JET plasmas by changing hydrogen isotopes (H-D-T) showed that the magnitude of the near SOL E-r is lower in H cases in which the H-mode threshold power is higher (Chankin et al 2017 Plasma Phys. Control. Fusion 59 045012). From the experiment it is also known that hydrogen plasmas have poorer particle and energy confinement than deuterium plasmas, consistent with the code simulation results showing larger particle diffusion coefficients at the plasma edge, including SOL, in hydrogen plasmas (Maggi et al 2018 Plasma Phys. Control. Fusion 60 014045). All these experimental observations and code results support the hypothesis that the near SOL E x B shear can have an impact on the plasma confinement. The present work analyzes neutral ionization patterns of JET plasmas with different hydrogen isotopes in L-mode cases with fixed input power and gas puffing rate, and its impact on target electron temperature, T-e, and SOL E-r. The possibility of a self-feeding mechanism for the increase in the SOL E-r via the interplay between poloidal E x B drift and target T-e is discussed. It is also shown that reducing anomalous turbulent transport coefficients, particle diffusion and electron and ion heat conductivities, leads to higher peak target T-e and larger E-r, suggesting the possibility of a positive feedback loop, under an implicitly made assumption that the E x B shear in the SOL is capable of suppressing turbulence.
  •  
10.
  • Craciunescu, Teddy, et al. (author)
  • Evaluation of reconstruction errors and identification of artefacts for JET gamma and neutron tomography
  • 2016
  • In: Review of Scientific Instruments. - : American Institute of Physics (AIP). - 0034-6748 .- 1089-7623. ; 87:1
  • Journal article (peer-reviewed)abstract
    • The Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open. The reconstruction technique based on the maximum likelihood principle, that proved already to be a powerful tool for JET tomography, has been used to develop a method for the numerical evaluation of the statistical properties of the uncertainties in gamma and neutron emissivity reconstructions. The image covariance calculation takes into account the additional techniques introduced in the reconstruction process for tackling with the limited data set (projection resampling, smoothness regularization depending on magnetic field). The method has been validated by numerically simulations and applied to JET data. Different sources of artefacts that may significantly influence the quality of reconstructions and the accuracy of variance calculation have been identified.
  •  
11.
  • Denis, J., et al. (author)
  • Dynamic modelling of local fuel inventory and desorption in the whole tokamak vacuum vessel for auto-consistent plasma-wall interaction simulations
  • 2019
  • In: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 19, s. 550-557
  • Journal article (peer-reviewed)abstract
    • An extension of the SolEdge2D-EIRENE code package, named D-WEE, has been developed to add the dynamics of thermal desorption of hydrogen isotopes from the surface of plasma facing materials. To achieve this purpose, D-WEE models hydrogen isotopes implantation, transport and retention in those materials. Before launching autoconsistent simulation (with feedback of D-WEE on SolEdge2D-EIRENE), D-WEE has to be initialised to ensure a realistic wall behaviour in terms of dynamics (pumping or fuelling areas) and fuel content. A methodology based on modelling is introduced to perform such initialisation. A synthetic plasma pulse is built from consecutive SolEdge2D-EIRENE simulations. This synthetic pulse is used as a plasma background for the D-WEE module. A sequence of plasma pulses is simulated with D-WEE to model a tokamak operation. This simulation enables to extract at a desired time during a pulse the local fuel inventory and the local desorption flux density which could be used as initial condition for coupled plasma-wall simulations. To assess the relevance of the dynamic retention behaviour obtained in the simulation, a confrontation to post-pulse experimental pressure measurement is performed. Such confrontation reveals a qualitative agreement between the temporal pressure drop obtained in the simulation and the one observed experimentally. The simulated dynamic retention during the consecutive pulses is also studied.
  •  
12.
  • Eriksson, Frida, 1986, et al. (author)
  • Interpretative and predictive modelling of Joint European Torus collisionality scans
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:11
  • Journal article (peer-reviewed)abstract
    • Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as (E)over-right-arrow x (b)over-right-arrow shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges.
  •  
13.
  • Garcia, J., et al. (author)
  • First principles and integrated modelling achievements towards trustful fusion power predictions for JET and ITER
  • 2019
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:8
  • Journal article (peer-reviewed)abstract
    • Predictability of burning plasmas is a key issue for designing and building credible future fusion devices. In this context, an important effort of physics understanding and guidance is being carried out in parallel to JET experimental campaigns in H and D by performing analyses and modelling towards an improvement of the understanding of DT physics for the optimization of the JET-DT neutron yield and fusion born alpha particle physics. Extrapolations to JET-DT from recent experiments using the maximum power available have been performed including some of the most sophisticated codes and a broad selection of models. There is a general agreement that 11-15 MW of fusion power can be expected in DT for the hybrid and baseline scenarios. On the other hand, in high beta, torque and fast ion fraction conditions, isotope effects could be favourable leading to higher fusion yield. It is shown that alpha particles related physics, such as TAE destabilization or fusion power electron heating, could be studied in ITER relevant JET-DT plasmas.
  •  
14.
  •  
15.
  • Kirschner, A., et al. (author)
  • Modelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings
  • 2019
  • In: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 18, s. 239-244
  • Journal article (peer-reviewed)abstract
    • The erosion, transport and deposition of tungsten in the outer divertor of JET-ILW has been studied for an H-Mode discharge with low frequency ELMs. For this specific case with an inter-ELM electron temperature at the strike point of about 20 eV, tungsten sputtering between ELMs is almost exclusively due to beryllium impurity and self-sputtering. However, during ELMs tungsten sputtering due to deuterium becomes important and even dominates. The amount of simulated local deposition of tungsten relative to the amount of sputtered tungsten in between ELMs is very high and reaches values of 99% for an electron density of 5E13 cm(-3) at the strike point and electron temperatures between 10 and 30 eV. Smaller deposition values are simulated with reduced electron density. The direction of the B-field significantly influences the local deposition and leads to a reduction if the E x B drift directs towards the scrape-off-layer. Also, the thermal force can reduce the tungsten deposition, however, an ion temperature gradient of about 0.1 eV/mm or larger is needed for a significant effect. The tungsten deposition simulated during ELMs reaches values of about 98% assuming ELM parameters according to free-streaming model. The measured WI emission profiles in between and within ELMs have been reproduced by the simulation. The contribution to the overall net tungsten erosion during ELMs is about 5 times larger than the one in between ELMs for the studied case. However, this is due to the rather low electron temperature in between ELMs, which leads to deuterium impact energies below the sputtering threshold for tungsten.
  •  
16.
  • Kotschenreuther, M., et al. (author)
  • Gyrokinetic analysis and simulation of pedestals to identify the culprits for energy losses using 'fingerprints'
  • 2019
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:9
  • Journal article (peer-reviewed)abstract
    • Fusion performance in tokamaks hinges critically on the efficacy of the edge transport barrier (ETB) in suppressing energy losses. The new concept of 'fingerprints' is introduced to identify the instabilities that cause transport losses in the ETBs of many of today's experiments, from among widely posited candidates. Analysis of the gyrokinetic-Maxwell equations and gyrokinetic simulations of experiments reveals that each mode type produces characteristic ratios of transport in the various channels: density, heat, and impurities. This, together with experimental observations of transport in some channel or of the relative size of the driving sources of channels, can identify or determine the dominant modes causing energy transport. In multiple H-mode cases with edge-localized modes that are examined, these fingerprints indicate that magnetohydrodynamic (MHD)-like modes are apparently not the dominant agent of energy transport; rather, this role is played by micro-tearing modes (MTMs) and electron temperature gradient (ETG) modes, and in addition, possibly by ion temperature gradient/ trapped electron modes (ITG/TEM) on JET (Joint European 'Torus). MHD-like modes may dominate the electron particle losses. Fluctuation frequency can also be an important means of identification, and is often closely related to the transport fingerprint. The analytical arguments unify and explain previously disparate experimental observations on multiple devices, including DIII-D, JET, and ASDEX-U. Detailed simulations of two DIII-D ETBs also demonstrate and corroborate this.
  •  
17.
  • Krivska, A., et al. (author)
  • RF sheath modeling of experimentally observed plasma surface interactions with the JET ITER-Like Antenna
  • 2019
  • In: Nuclear Materials and Energy. - : Elsevier BV. - 2352-1791. ; 19, s. 324-329
  • Journal article (peer-reviewed)abstract
    • Waves in the Ion Cyclotron Range of Frequencies (ICRF) enhance local Plasma-Surface Interactions (PSI) near the wave launchers and magnetically-connected objects via Radio-Frequency (RF) sheath rectification. ITER will use 20MW of ICRF power over long pulses, questioning the long-term impact of RF-enhanced localized erosion on the lifetime of its Beryllium (Be) wall. Recent dedicated ICRF-heated L-mode discharges documented this process on JET for different types of ICRF antennas. Using visible spectroscopy in JET ICRF-heated L-mode discharges, poloidally-localized regions of enhanced (by similar to 2-4x) Be I and Be II light emission were observed on two outboard limiters magnetically connected to the bottom of the active ITER-Like Antenna (ILA). The observed RF-PSI induced by the ILA was qualitatively comparable to that induced by the JET standard, type-A2 antennas, for similar strap toroidal phasing and connection geometries. The Be II line emission was found more intense when powering the bottom half of the ILA rather than its top half. Conversely, more pronounced SOL density modifications were observed with only top array operation, on field lines connected to the top half of the ILA. So far the near-field modeling of the ILA with antenna code TOPICA (Torino Polytechnic Ion Cyclotron Antenna), using curved antenna model, was partially able to reproduce qualitatively the observed phenomena. A quantitative discrepancy persisted between the observed Be source amplification and the calculated, corresponding increases in E-// field at the magnetically connected locations to the ILA when changing from only top to only bottom half antenna operation. This paper revisits these current drive phased and half-ILA powered cases using for the new simulations flat model of the ILA and more realistic antenna feeding to calculate the E-// field maps with TOPICA code. Further, the Self-consistent Sheaths and Waves for Ion Cyclotron Heating Slow Wave (SSWICH-SW) code, which couples slow wave evanescence with DC Scrape-Off Layer (SOL) biasing, is used to estimate the poloidal distribution of rectified RF-sheath Direct Current (DC) potential V-DC in the private SOL between the ILA poloidal limiters. The approach so far was limited to correlating the observed, enhanced emission regions at the remote limiters to the antenna near-electric fields, as calculated by TOPICA. The present approach includes also a model for the rectification of these near-fields in the private SOL of the ILA. With the improved approach, when comparing only top and only bottom half antenna feeding, we obtained good qualitative correlation between all experimental measurements and the calculated local variations in the E-// field and V-DC potential.
  •  
18.
  • Likonen, J., et al. (author)
  • Investigation of deuterium trapping and release in the JET divertor during the third ILW campaign using TDS
  • 2019
  • In: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 19, s. 300-306
  • Journal article (peer-reviewed)abstract
    • Selected set of samples from JET ITER-Like Wall (JET-ILW) divertor tiles exposed in 2015-2016 has been analysed using Thermal Desorption Spectrometry (TDS). The deuterium (D) amounts obtained with TDS were compared with Nuclear Reaction Analysis (NRA). The highest amount of D was found on the top part of inner divertor which has regions with the thickest deposited layers as for divertor tiles removed in 2014. This area resides deep in the scrape-off layer and plasma configurations for the second (ILW-2, 2013-2014) and the third (ILW-3, 2015-2016) JET-ILW campaigns were similar. Agreement between TDS and NRA is good on the apron of Tile 1 and on the upper vertical region whereas on the lower vertical region of Tile 1 the NRA results are clearly smaller than the TDS results. Inner divertor Tile 3 has somewhat less D than Tiles 0 and 1, and the D amount decreases towards the lower part of the tile. The D retention at the divertor inner and outer corner regions is not symmetric as there is more D retention poloidally at the inner than at the outer divertor corner. In most cases the TDS spectra for the ILW-3 samples are different from the corresponding ILW-2 spectra because HD and D-2 release occurs at higher temperatures than from the ILW-2 samples indicating that the low energy traps have been emptied during the plasma operations and that D is either in the energetically deep traps or located deeper in the sample.
  •  
19.
  • Likonen, J., et al. (author)
  • Investigation of deuterium trapping and release in the JET ITER-like wall divertor using TDS and TMAP
  • 2019
  • In: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 19, s. 166-178
  • Journal article (peer-reviewed)abstract
    • Selected set of samples from JET ITER-Like Wall (JET-ILW) divertor tiles exposed both in 2013-2014 and 2011-2014 has been analysed using Thermal Desorption Spectrometry (TDS). The deuterium (D) amounts obtained with TDS were compared with Ion Beam Analysis (IBA) and Secondary Ion Mass Spectrometry (SIMS) data. The highest amount of D was found on the top part of inner divertor which has regions with the thickest deposited layers. This area resides deep in the scrape-off layer. Changes in plasma configurations between the first (2011-2012) and the second (2013-2014) JET-ILW campaign altered the material migration towards the inner and the outer divertor corner increasing the amount of deposition in the shadowed areas of the divertor base tiles. D retention on the outer divertor tiles is clearly smaller than on the inner divertor tiles. Experimental TDS spectra for samples from the top part of inner divertor and from the outer strike point region were modelled using TMAP program. Experimental deuterium profiles obtained with SIMS have been used and the detrapping and the activation energies have been adjusted. Analysis of the results of the TMAP simulations enabled to determine the nature of traps in different samples.
  •  
20.
  • Maggi, C. F., et al. (author)
  • Isotope identity experiments in JET-ILW with H and D L-mode plasmas
  • 2019
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:7
  • Journal article (peer-reviewed)abstract
    • NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters, rho*, nu*, beta and q in the plasma core confinement region and same T-i/T-e and Z(eff). The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confinement region of these plasmas, where the dominant instabilities are Ion Temperature Gradient (ITG) modes. The dimensionless thermal energy confinement time, Omega(i) tau(E,th), and the scaled core plasma heat diffusivity, A chi(eff)/B-T, are identical in H and D within error bars, indicating lack of isotope mass dependence of the dimensionless L-mode thermal energy confinement time in JET-ILW. Predictive flux driven simulations with JETTO-TGLF of the H and D identity pair is in very good agreement with experiment for both isotopes: the stiff core heat transport, typical of JET-ILW NBI heated L-modes, overcomes the local gyro-Bohm scaling of gradient-driven TGLF, explaining the lack of isotope mass dependence in the confinement region of these plasmas. The effect of E x B shearing on the predicted heat and particle transport channels is found to be negligible for these low beta and low momentum input plasmas.
  •  
21.
  • Makepeace, C., et al. (author)
  • The effect of beryllium oxide on retention in JET ITER-like wall tiles
  • 2019
  • In: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 19, s. 346-351
  • Journal article (peer-reviewed)abstract
    • Preliminary results investigating the microstructure, bonding and effect of beryllium oxide formation on retention in the JET ITER-like wall beryllium tiles, are presented. The tiles have been investigated by several techniques: Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX), Transmission Electron microscopy (TEM) equipped with EDX and Electron Energy Loss Spectroscopy (EELS), Raman Spectroscopy and Thermal Desorption Spectroscopy (TDS). This paper focuses on results from melted materials of the dump plate tiles in JET. From our results and the literature, it is concluded, beryllium can form micron deep oxide islands contrary to the nanometric oxides predicted under vacuum conditions. The deepest oxides analyzed were up to 2-micron thicknesses. The beryllium Deuteroxide (BeOxDy) bond was found with Raman Spectroscopy. Application of EELS confirmed the oxide presence and stoichiometry. Literature suggests these oxides form at temperatures greater than 700 degrees C where self-diffusion of beryllium ions through the surface oxide layer can occur. Further oxidation is made possible between oxygen plasma impurities and the beryllium ions now present at the wall surface. Under Ultra High Vacuum (UHV) nanometric Beryllium oxide layers are formed and passivate at room temperature. After continual cyclic heating (to the point of melt formation) in the presence of oxygen impurities from the plasma, oxide growth to the levels seen experimentally (approximately two microns) is proposed. This retention mechanism is not considered to contribute dramatically to overall retention in JET, due to low levels of melt formation. However, this mechanism, thought the result of operation environment and melt formation, could be of wider concern to ITER, dependent on wall temperatures.
  •  
22.
  • Nabais, F., et al. (author)
  • Energetic ion losses 'channeling' mechanism and strategy for mitigation
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:8
  • Journal article (peer-reviewed)abstract
    • Results from two different sets of JET experiments are presented. In experiments in which toroidicity-induced Alfven eigenmodes (TAEs) localized at different radial locations had the same frequencies and toroidal mode numbers, the occurrence of enhanced losses after the excitation of TAEs in the core of the plasma was observed. On the contrary, enhanced losses were not observed if the TAEs localized at different radial locations had different frequencies and toroidal mode numbers. Numerical modeling indicates that, in the first set of experiments, the enhanced losses were caused by a combined effect of the TAEs localized at different radial locations. The TAEs localized in the plasma core transported energetic ions from the core to outer regions of the plasma. Then, the TAEs localized in outer regions of the plasma interacted with these ions just transported by the core-localized TAEs causing a further radial displacement of the ions to the plasma edge. This process eventually ends up causing the loss of the resonant ions. In the second set of experiments, it was found that TAEs localized in the plasma core and in outer regions did not interact with the same ions and so no enhanced losses were measured. Sheared profiles of the safety factor combined with flat mass density profiles lead to larger differences on the frequencies of the TAEs localized at different radial locations, eventually avoiding loss of energetic ions through the described mechanism.
  •  
23.
  • Neverov, V. S., et al. (author)
  • Determination of isotope ratio in the divertor of JET-ILW by high-resolution H alpha spectroscopy : H-D experiment and implications for D-T experiment
  • 2019
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:4
  • Journal article (peer-reviewed)abstract
    • The data of the H alpha high-resolution spectroscopy, collected on the multiple lines of sight, which cover the entire divertor space in poloidal cross-section, during the recent hydrogen-deuterium experiments in JET-ILW (ITER-like wall), are processed. A strong spatial inhomogeneity of the hydrogen concentration, H/(H + D), in divertor is found in many pulses. Namely, the H/(H + D) ratio may be lower in the inner divertor than that in the outer divertor by the values of 0.15-0.35, depending on the conditions of gas puffing and plasma heating. This effect suggests the necessity of spatially-resolved measurements of isotope ratio in the divertor in the upcoming deuterium-tritium experiments. Also, separation of the overlapped T alpha and D alpha spectral lines is shown to be a challenging task especially when the local Doppler-broadened (Gaussian) line shapes are noticeably distorted by the net inward flux of fast non-Maxwellian neutral atoms. We use the respective, formerly developed model of an asymmetric spectral line shape, while analysing the data of the first deuterium-tritium experiment in JET-C (carbon wall), and test the model via comparing the isotope ratio results with another diagnostic's measurements. This model is shown to increase the accuracy of tritium concentration measurements in the divertor.
  •  
24.
  • Pamela, S., et al. (author)
  • A wall-aligned grid generator for non-linear simulations of MHD instabilities in tokamak plasmas
  • 2019
  • In: Computer Physics Communications. - : Elsevier. - 0010-4655 .- 1879-2944. ; 243, s. 41-50
  • Journal article (peer-reviewed)abstract
    • Block-structured mesh generation techniques have been well addressed in the CFD community for automobile and aerospace studies, and their applicability to magnetic fusion is highly relevant, due to the complexity of the plasma-facing wall structures inside a tokamak device. Typically applied to non-linear simulations of MHD instabilities relevant to magnetically confined fusion, the JOREK code was originally developed with a 2D grid composed of isoparametric bi-cubic Bezier finite elements, that are aligned to the magnetic equilibrium of tokamak plasmas (the third dimension being represented by Fourier harmonics). To improve the applicability of these simulations, the grid-generator has been generalised to provide a robust extension method, using a block-structured mesh approach, which allows the simulations of arbitrary domains of tokamak vacuum vessels. Such boundary-aligned grids require the adaptation of boundary conditions along the edge of the new domain. Demonstrative non-linear simulations of plasma edge instabilities are presented to validate the robustness of the new grid, and future potential physics applications for tokamak plasmas are discussed. The methods presented here may be of interest to the wider community, beyond tokamak physics, wherever imposing arbitrary boundaries to quadrilateral finite elements is required.
  •  
25.
  • Silva, C., et al. (author)
  • Geodesic acoustic mode evolution in L-mode approaching the L-H transition on JET
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:7
  • Journal article (peer-reviewed)abstract
    • Geodesic acoustic modes (GAMs) may generate strong oscillations in the radial electric field and therefore are considered as a possible trigger mechanism for the L-H transition. This contribution focuses on the characterization of GAMs in JET plasmas when approaching the L-H transition aiming at understanding their possible role in triggering the transition. GAM and turbulence characteristics are measured at the plasma edge using Doppler backscattering for different plasma current and line-averaged densities. The radial location of the GAM often moves further inside when neutral beam injection is applied possibly as a response to changes in the turbulence drive. GAMs are found to have modest amplitude at the transition except for high density discharges where GAMs are stronger, suggesting that the GAM is not responsible for facilitating the transition as the L-H power threshold also increases with density in the high density branch of the L-H transition. Our results suggest that the GAM alone does not play a leading role for causing the L-H transition at JET.
  •  
26.
  • Telesca, G., et al. (author)
  • COREDIV numerical simulation of high neutron rate JET-ILW DD pulses in view of extension to JET-ILW DT experiments
  • 2019
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:5
  • Journal article (peer-reviewed)abstract
    • Two high performance JET-ILW pulses, pertaining to the 2016 experimental campaign, have been numerically simulated with the self-consistent code COREDIV with the aim of predicting the ELM-averaged power load to the target when extrapolated to DT plasmas. The input power of about 33 MW as well as the total radiated power and the average density are similar in the two pulses, but for one of them the density is provided by combined low gas puff and pellet injection, characterized by low SOL density, for the other one by gas fuelling only, at higher SOT. density. Considering the magnetic configuration of theses pulses and the presence of a significant amount of Ni (not included in the version of the code used for these simulations), a number of assumptions are made in order to reproduce numerically the main core and SOL experimental data. The extrapolation to DT plasmas at the original input power of 33 MW, and taking into account only the thermal component of the alpha-power, does not show any significant difference regarding the power to the target with respect to the DD case. In contrast, the simulations at auxiliary power 40 MW, both at the original I-p = 3 MA and at I-p = 4 MA, show that the power to the target for both pulses is possibly too high to be sustained for about 5 s by strike-point sweeping alone without any control by Ne seeding. Even though the target power load may decrease to about 13-15 MW with substantial Ne seeding for both pulses, as from numerical predictions, there are indications suggesting that the control of the power load may be more critical for the pulse with pellet injection, due to the reduced SOL radiation.
  •  
27.
  • Varje, J., et al. (author)
  • Synthetic diagnostic for the JET scintillator probe lost alpha measurements
  • 2019
  • In: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 14
  • Journal article (peer-reviewed)abstract
    • A synthetic diagnostic has been developed for the JET lost alpha scintillator probe, based on the ASCOT fast ion orbit following code and the AFSI fusion source code. The synthetic diagnostic models the velocity space distribution of lost fusion products in the scintillator probe. Validation with experimental measurements is presented, where the synthetic diagnostic is shown to predict the gyroradius and pitch angle of lost DD protons and tritons. Additionally, the synthetic diagnostic reproduces relative differences in total loss rates in multiple phases of the discharge, which can be used as a basis for total loss rate predictions.
  •  
28.
  • Weiland, M., et al. (author)
  • Simulation of neutron emission in neutral beam injection heated plasmas with the real-time code RABBIT
  • 2019
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:8
  • Journal article (peer-reviewed)abstract
    • In plasmas heated with deuterium beams a deficit of the expected fusion neutron rate is an indicator of the deterioration of the fast-ion confinement, caused, for instance, by magnetohydrodynamic instabilities. The capability of predicting this deficit during the discharge relies on the availability of real-time estimates of the neutron rate from NBI codes which must be fast and accurate at the same time. Therefore, the recently developed real-time RABBIT code for neutral beam injection (NBI) simulations has been extended to output the distribution function and calculate the neutron emission. After the description of this newly installed diagnostics in RABBIT, benchmarks with NUBEAM, a massively used and validated Monte Carlo NBI solver, are discussed on ASDEX-Upgrade and JET cases. A first application for control-room intershot analysis on DIII-D is presented, and the results are compared on a large database with a slower NUBEAM analysis. Further application possibilities, e.g. for real-time control of Alfven eigenmodes, are outlined.
  •  
29.
  • Widdowson, A., et al. (author)
  • Deposition of impurity metals during campaigns with the JET ITER-like Wall
  • 2019
  • In: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 19, s. 218-224
  • Journal article (peer-reviewed)abstract
    • Post mortem analysis shows that mid and high atomic number metallic impurities are present in deposits on JET plasma facing components with the highest amount of Ni and W, and therefore the largest sink, being found at the top of the inner divertor. Sources are defined as "continuous" or "specific", in that "continuous" sources arise from ongoing erosion from plasma facing surfaces and "specific" are linked with specific events which decrease over time until they no longer act as a source. This contribution evaluates the sinks and estimates sources, and the balance gives an indication of the dominating processes. Charge exchange neutral erosion is found to be the main source of nickel, whereas erosion of divertor plasma facing components is the main source of tungsten. Specific sources are shown to have little influence over the global mid- and high-Z impurity concentrations in deposits.
  •  
30.
  • Zanca, P., et al. (author)
  • A power-balance model of the density limit in fusion plasmas : application to the L-mode tokamak
  • 2019
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:12
  • Journal article (peer-reviewed)abstract
    • A power-balance model, with radiation losses from impurities and neutrals, gives a unified description of the density limit (DL) of the stellarator, the L-mode tokamak, and the reversed field pinch (RFP). The model predicts a Sudo-like scaling for the stellarator, a Greenwald- like scaling, alpha I-p(8/9), for the RFP and the ohmic tokamak, a mixed scaling, alpha (PIp4/9)-I-4/9, for the additionally heated L-mode tokamak. In a previous paper (Zanca et al 2017 Nucl. Fusion 57 056010) the model was compared with ohmic tokamak, RFP and stellarator experiments. Here, we address the issue of the DL dependence on heating power in the L-mode tokamak. Experimental data from high-density disrupted L-mode discharges performed at JET, as well as in other machines, arc taken as a term of comparison. The model fits the observed maximum densities better than the pure Greenwald limit.
  •  
31.
  • Aho-Mantila, L., et al. (author)
  • Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET
  • 2017
  • In: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:3
  • Journal article (peer-reviewed)abstract
    • The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.
  •  
32.
  •  
33.
  • Angioni, C., et al. (author)
  • Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes
  • 2017
  • In: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:2
  • Journal article (peer-reviewed)abstract
    • In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.
  •  
34.
  • Angioni, C., et al. (author)
  • The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas
  • 2015
  • In: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 22:5
  • Journal article (peer-reviewed)abstract
    • Recent progress in the understanding and prediction of the tungsten behaviour in the core of JET H-mode plasmas with ITER-like wall is presented. Particular emphasis is given to the impact of poloidal asymmetries of the impurity density. In particular, it is shown that the predicted reduction of temperature screening induced by the presence of low field side localization of the tungsten density produced by the centrifugal force is consistent with the observed tungsten behaviour in a JET discharge in H-mode baseline scenario. This provides first evidence of the role of poloidal asymmetries in reducing the strength of temperature screening. The main differences between plasma parameters in JET baseline and hybrid scenario discharges which affect the impact of poloidally asymmetric density on the tungsten radial transport are identified. This allows the conditions by which tungsten accumulation can be avoided to be more precisely defined.
  •  
35.
  • Appel, L. C., et al. (author)
  • Equilibrium reconstruction in an iron core tokamak using a deterministic magnetisation model
  • 2018
  • In: Computer Physics Communications. - : ELSEVIER. - 0010-4655 .- 1879-2944. ; 223, s. 1-17
  • Journal article (peer-reviewed)abstract
    • In many tokamaks ferromagnetic material, usually referred to as an iron-core, is present in order to improve the magnetic coupling between the solenoid and the plasma. The presence of the iron core in proximity to the plasma changes the magnetic topology with consequent effects on the magnetic field structure and the plasma boundary. This paper considers the problem of obtaining the free-boundary plasma equilibrium solution in the presence of ferromagnetic material based on measured constraints. The current approach employs, a model described by O'Brien et al. (1992) in which the magnetisation currents at the iron-air boundary are represented by a set of free parameters and appropriate boundary conditions are enforced via a set of quasi-measurements on the material boundary. This can lead to the possibility of overfitting the data and hiding underlying issues with the measured signals. Although the model typically achieves good fits to measured magnetic signals there are significant discrepancies in the inferred magnetic topology compared with other plasma diagnostic measurements that are independent of the magnetic field. An alternative approach for equilibrium reconstruction in iron-core tokamaks, termed the deterministic magnetisation model is developed and implemented in EFIT++. The iron is represented by a boundary current with the gradients in the magnetisation dipole state generating macroscopic internal magnetisation currents. A model for the boundary magnetisation currents at the iron-air interface is developed using B-Splines enabling continuity to arbitrary order; internal magnetisation currents are allocated to triangulated regions within the iron, and a method to enable adaptive refinement is implemented. The deterministic model has been validated by comparing it with a synthetic 2-D electromagnetic model of JET. It is established that the maximum field discrepancy is less than 1.5 mT throughout the vacuum region enclosing the plasma. The discrepancies of simulated magnetic probe signals are accurate to within 1% for signals with absolute magnitude greater than 100 mT; in all other cases agreement is to within 1 mT. The effect of neglecting the internal magnetisation currents increases the maximum discrepancy in the vacuum region to >20 mT, resulting in errors of 5%-10% in the simulated probe signals. The fact that the previous model neglects the internal magnetisation currents (and also has additional free parameters when fitting the measured data) makes it unsuitable for analysing data in the absence of plasma current. The discrepancy of the poloidal magnetic flux within the vacuum vessel is to within 0.1 Wb. Finally the deterministic model is applied to an equilibrium force-balance solution of a JET discharge using experimental data. It is shown that the discrepancies of the outboard separatrix position, and the outer strike-point position inferred from Thomson Scattering and Infrared camera data are much improved beyond the routine equilibrium reconstruction, whereas the discrepancy of the inner strike-point position is similar.
  •  
36.
  • Arnichand, H., et al. (author)
  • Discriminating the trapped electron modes contribution in density fluctuation spectra
  • 2015
  • In: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:9
  • Journal article (peer-reviewed)abstract
    • Quasi-coherent (QC) modes have been reported for more than 10 years in reflectometry fluctuations spectra in the core region of fusion plasmas. They have characteristics in-between coherent and broadband fluctuations as they oscillate at a marked frequency but have a wide spectrum. This work presents further evidences of the link recently established between QC modes and the trapped electron modes (TEM) instabilities (Arnichand et al 2014 Nucl. Fusion 54 123017). In electron cyclotron resonance heated discharges of Tore Supra, an enhancement of QC modes amplitude is observed in a region where TEM cause impurity transport and turbulence. In JET Ohmic plasmas, QC modes disappear during density ramp-up and current ramp-down. This is reminiscent of Tore Supra and TEXTOR observations during transitions from the linear Ohmic confinement (LOC) to the saturated Ohmic confinement (SOC) regimes. Evidencing TEM activity then becomes experimentally possible via analysis of fluctuation spectra.
  •  
37.
  • Aslanyan, V, et al. (author)
  • Gyrokinetic simulations of toroidal Alfven eigenmodes excited by energetic ions and external antennas on the Joint European Torus
  • 2019
  • In: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 59:2
  • Journal article (peer-reviewed)abstract
    • The gyrokinetic toroidal code (GTC) has been used to study toroidal Alfven eigenmodes (TAEs) in high-performance plasmas. Experiments performed at the Joint European Torus (JET), where TAEs were driven by energetic particles arising from neutral beams, ion cyclotron resonant heating, and resonantly excited by dedicated external antennas, have been simulated. Modes driven by populations of energetic particles are observed, matching the TAE frequency seen with magnetic probes in JET experiments. A synthetic antenna, composed of one toroidal and two neighboring poloidal harmonics has been used to probe the modes' damping rates and quantify mechanisms for this damping in GTC simulations. This method was also applied to frequency and damping rate measurements of stable TAEs made by the Alfven eigenmode active diagnostic in these discharges.
  •  
38.
  • Baiocchi, B., et al. (author)
  • Transport analysis and modelling of the evolution of hollow density profiles plasmas in JET and implication for ITER
  • 2015
  • In: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:12
  • Journal article (peer-reviewed)abstract
    • The density evolution during the transient phase just after the L-H transition is investigated using theoretical transport models. Cases characterized by core densities which evolve in longer timescales than the edge densities, leading to hollow density profiles (R/L-n = -R del n/n < 0) are modelled. This density evolution is particularly interesting because it has been shown to be beneficial in the view of the access to burning plasma conditions in ITER (Loarte et al 2013 Nucl. Fusion 53 083031). Self-consistent simulations of the JET discharge 79676 of the density-only, and of the density and the temperatures are carried out using a quasilinear gyrokinetic code, QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501), coupled with a transport code CRONOS (Artaud et al 2010 Nucl. Fusion 50 043001). The slow evolution of the hollow density, associated with the self-consistently calculated hollow NBI particle deposition, is well reproduced in the plasma core. Indeed, QuaLiKiz is shown to reproduce nonlinear gyrokinetic heat and particle fluxes well for both positive and negative R/L-n. That gives a theoretical and general basis for the persistence of the hollowness, laying the groundwork for the extrapolation to ITER.
  •  
39.
  • Baiocchi, B., et al. (author)
  • Turbulent transport analysis of JET H-mode and hybrid plasmas using QuaLiKiz and Trapped Gyro Landau Fluid
  • 2015
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 57:3
  • Journal article (peer-reviewed)abstract
    • The physical transport processes at the basis of JET typical inductive H-mode scenarios and advanced hybrid regimes, with improved thermal confinement, are analyzed by means of some of the newest and more sophisticated quasi-linear transport models: trapped gyro Landau fluid (TGLF) and QuaLiKiz. The temporal evolution of JET pulses is modelled by CRONOS where the turbulent transport is modelled by either QuaLiKiz or TGLF. Both are first principle models with a more comprehensive physics than the models previously developed and therefore allow the analysis of the physics at the basis of the investigated scenarios. For H-modes, ion temperature gradient (ITG) modes are found to be dominant and the transport models are able to properly reproduce temperature profiles in self-consistent simulations. However, for hybrid regimes, in addition to ITG trapped electron modes (TEM) are also found to be important and different physical mechanisms for turbulence reduction play a decisive role. Whereas E x B flow shear and plasma geometry have a limited impact on turbulence, the presence of a large population of fast ions, quite important in low density regimes, can stabilize core turbulence mainly when the electromagnetic effects are taken into account. The TGLF transport model properly captures these mechanisms and correctly reproduces temperatures.
  •  
40.
  • Baron-Wiechec, A., et al. (author)
  • Thermal desorption spectrometry of beryllium plasma facing tiles exposed in the JET tokamak
  • 2018
  • In: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 133, s. 135-141
  • Journal article (peer-reviewed)abstract
    • The phenomena of retention and de-trapping of deuterium (D) and tritium (T) in plasma facing components (PFC) and supporting structures must be understood in order to limit or control total T inventory in larger future fusion devices such as ITER, DEMO and commercial machines. The goal of this paper is to present details of the thermal desorption spectrometry (TDS) system applied in total fuel retention assessment of PFC at the Joint European Torus (JET). Examples of TDS results from beryllium (Be) wall tile samples exposed to JET plasma in PFC configuration mirroring the planned ITER PFC is shown for the first time. The method for quantifying D by comparison of results from a sample of known D content was confirmed acceptable. The D inventory calculations obtained from Ion Beam Analysis (IBA) and TDS agree well within an error associated with the extrapolation from very few data points to a large surface area.
  •  
41.
  • Basiuk, V., et al. (author)
  • Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth : effects on transport coefficients
  • 2017
  • In: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:12
  • Journal article (peer-reviewed)abstract
    • The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.
  •  
42.
  • Batistoni, P., et al. (author)
  • Overview of neutron measurements in jet fusion device
  • 2018
  • In: Radiation Protection Dosimetry. - : OXFORD UNIV PRESS. - 0144-8420 .- 1742-3406. ; 180:1-4, s. 102-108
  • Journal article (peer-reviewed)abstract
    • The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation.
  •  
43.
  • Batistoni, P., et al. (author)
  • Technical preparations for the in-vessel 14 MeV neutron calibration at JET
  • 2017
  • In: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 117, s. 107-114
  • Journal article (peer-reviewed)abstract
    • The power output of fusion devices is measured from their neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods that have been prepared to perform a new in situ 14 MeV neutron calibration at JET in view of the new DT campaign planned at JET in the next years. The target accuracy of this calibration is 10% as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. In this paper, the constraints and early decisions which defined the main calibration approach are discussed, e.g., the choice of 14 MeV neutron source and the deployment method. The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are also discussed. The existing JET remote-handling system will be used to deploy the neutron source inside the JET vessel. For this purpose, compatible tooling and systems necessary to ensure safe and efficient deployment have been developed. The scientific programme of the preparatory phase is devoted to fully characterizing the selected 14 MeV neutron generator to be used as the calibrating source, obtain a better understanding of the limitations of the calibration, optimise the measurements and other provisions, and to provide corrections for perturbing factors (e.g., anisotropy of the neutron generator, neutron energy spectrum dependence on emission angle). Much of this work has been based on an extensive programme of Monte-Carlo calculations which provide support and guidance in developing the calibration strategy.
  •  
44.
  • Beal, J., et al. (author)
  • Deposition in the inner and outer corners of the JET divertor with carbon wall and metallic ITER-like wall
  • 2016
  • In: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T167
  • Journal article (peer-reviewed)abstract
    • Rotating collectors and quartz microbalances (QMBs) are used in JET to provide time-dependent measurements of erosion and deposition. Rotation of collector discs behind apertures allows recording of the long term evolution of deposition. QMBs measure mass change via the frequency deviations of vibrating quartz crystals. These diagnostics are used to investigate erosion/deposition during JET-C carbon operation and JET-ILW (ITER-like wall) beryllium/tungsten operation. A simple geometrical model utilising experimental data is used to model the time-dependent collector deposition profiles, demonstrating good qualitative agreement with experimental results. Overall, the JET-ILW collector deposition is reduced by an order of magnitude relative to JET-C, with beryllium replacing carbon as the dominant deposit. However, contrary to JET-C, in JET-ILW there is more deposition on the outer collector than the inner. This reversal of deposition asymmetry is investigated using an analysis of QMB data and is attributed to the different chemical properties of carbon and beryllium.
  •  
45.
  • Bergsåker, Henric, et al. (author)
  • Assessment of the strength of kinetic effects of parallel electron transport in the SOL and divertor of JET high radiative H-mode plasmas using EDGE2D-EIRENE and KIPP codes
  • 2018
  • In: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 60:11
  • Journal article (peer-reviewed)abstract
    • The kinetic code for plasma periphery (KIPP) was used to assess the importance of the kinetic effects of parallel electron transport in the scrape-off layer (SOL) and divertor of JET high radiative H-mode inter-ELM plasma conditions with the ITER-like wall and strong nitrogen (N-2) injection. Plasma parameter profiles along a magnetic field from one of the EDGE2D-EIRENE simulation cases were used as an input for KIPP runs. Profiles were maintained by particle and power sources. KIPP generated electron distribution functions, f(e), parallel power fluxes, electron-ion thermoforces, Debye sheath potential drops and electron sheath transmission factors at divertor targets. For heat fluxes in the main SOL, KIPP results showed deviations from classical (e.g. Braginskii) fluxes by factors typically of similar to 1.5, sometimes up to 2, with the flux limiting for more upstream positions and flux enhancement near entrances to the divertor. In the divertor, at the same time, for radial positions closer to the separatrix, very large heat flux enhancement factors of up to ten or even higher, indicative of a strong nonlocal heat transport, were found at the outer target, with heat power flux density exhibiting bump-on-tail features at high energies. Under such extreme conditions, however, contributions of conductive power fluxes to total power fluxes were strongly reduced, with convective power fluxes becoming comparable, or sometimes exceeding, conductive power fluxes. Electron-ion thermoforce, on the other hand, which is known to be determined mostly by thermal and subthermal electrons, was found to be in good agreement with Braginskii formulas, including the Z(eff) dependence. Overall, KIPP results indicate, at least for the plasma conditions used in this modelling, a sizable, but not dominant, effect of kinetics on parallel electron transport.
  •  
46.
  • Bergsåker, Henrik, et al. (author)
  • Microscopically nonuniform deposition and deuterium retention in the divertor in JET with ITER-like wall
  • 2015
  • In: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 463, s. 956-960
  • Journal article (peer-reviewed)abstract
    • The divertor surfaces in JET with ITER-like wall (ILW) have been studied using micro ion beam analysis (mu-IBA) methods and scanning electron microscopy (SEM). Deposited layers with beryllium as main constituent had been formed during plasma operations through 2011-2012. The deuterium trapping and impurity deposition were non-uniform, frequently enhanced within pits, cracks and valleys, regions reaching in size from 10 mu m to 200 mu m. The impurity deposition and fuel retention were correlated with the surface slope with respect to the direction of ion incidence. Typically more than 70% of the total measured areal density of trapped D was found in less than 30% of the surface area. This is of consequence for the interpretation of other surface analyses and in extrapolation from fuel retention in JET with ITER-like wall and rough divertor surfaces to ITER with smoother surfaces.
  •  
47.
  • Bernardo, J., et al. (author)
  • Ion temperature and toroidal rotation in JET's low torque plasmas
  • 2016
  • In: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 87:11
  • Journal article (peer-reviewed)abstract
    • This paper reports on the procedure developed as the best method to provide an accurate and reliable estimation of the ion temperature T-i and the toroidal velocity v(phi) from Charge-eXchange Recombination Spectroscopy (CXRS) data from intrinsic rotation experiments at the Joint European Torus with the carbon wall. The low impurity content observed in such plasmas, resulting in low active CXRS signal, alongside low Doppler shifts makes the determination of Ti and v(phi) particularly difficult. The beam modulation method will be discussed along with the measures taken to increase photon statistics and minimise errors from the absolute calibration and magneto-hydro-dynamics effects that may impact the CXRS passive emission.
  •  
48.
  • Bernert, M., et al. (author)
  • Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET
  • 2017
  • In: Nuclear Materials and Energy. - : Elsevier. - 2352-1791. ; 12, s. 111-118
  • Journal article (peer-reviewed)abstract
    • Future fusion reactors require a safe, steady state divertor operation. A possible solution for the power exhaust challenge is the detached divertor operation in scenarios with high radiated power fractions. The radiation can be increased by seeding impurities, such as N for dominant scrape-off-layer radiation, Ne or Ar for SOL and pedestal radiation and Kr for dominant core radiation. Recent experiments on two of the all-metal tokamaks, ASDEX Upgrade (AUG) and JET, demonstrate operation with high radiated power fractions and a fully-detached divertor by N, Ne or Kr seeding with a conventional divertor in a vertical target geometry. For both devices similar observations can be made. In the scenarios with the highest radiated power fraction, the dominant radiation originates from the confined region, in the case of N and Ne seeding concentrated in a region close to the X-point. Applying these seed impurities for highly radiative scenarios impacts local plasma parameters and alters the impurity transport in the pedestal region. Thus, plasma confinement and stability can be affected. A proper understanding of the effects by these impurities is required in order to predict the applicability of such scenarios for future devices.
  •  
49.
  • Bisoffi, Andrea, et al. (author)
  • Hybrid cancellation of ripple disturbances arising in AC/DC converters
  • 2017
  • In: Automatica. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0005-1098 .- 1873-2836. ; 77, s. 344-352
  • Journal article (peer-reviewed)abstract
    • In AC/DC converters, a peculiar periodic nonsmooth waveform arises, the so-called ripple. In this paper we propose a novel model that captures this nonsmoothness by means of a hybrid dynamical system performing state jumps at certain switching instants, and we illustrate its properties with reference to a three phase diode bridge rectifier. As the ripple corrupts an underlying desirable signal, we propound two observer schemes ensuring asymptotic estimation of the ripple, the first with and the second without knowledge of the switching instants. Our theoretical developments are well placed in the context of recent techniques for hybrid regulation and constitute a contribution especially for our second observer, where the switching instants are estimated. Once asymptotic estimation of the ripple is achieved, the ripple can be conveniently canceled from the desirable signal, and thanks to the inherent robustness properties of the proposed hybrid formulation, the two observer schemes require only that the desirable signal is slowly time varying compared to the ripple. Exploiting this fact, we illustrate the effectiveness of our second hybrid observation law on experimental data collected from the Joint European Torus tokamak.
  •  
50.
  • Bobkov, V., et al. (author)
  • Progress in reducing ICRF-specific impurity release in ASDEX upgrade and JET
  • 2017
  • In: Nuclear Materials and Energy. - : ELSEVIER. - 2352-1791. ; 12, s. 1194-1198
  • Journal article (peer-reviewed)abstract
    • Use of new 3-strap ICRF antennas with all-tungsten (W) limiters in ASDEX Upgrade results in a reduction of the W sources at the antenna limiters and of the W content in the confined plasma by at least a factor of 2 compared to the W-limiter 2-strap antennas used in the past. The reduction is observed with a broad range of plasma shapes. In multiple locations of antenna frame, the limiter W source has a minimum when RF image currents are decreased by cancellation of the RF current contributions of the central and the outer straps. In JET with ITER-like wall, ITER-like antenna produces about 20% less of main chamber radiation and of W content compared to the old A2 antennas. However the effect of the A2 antennas on W content is scattered depending on which antennas are powered. Experiments in JET with trace nitrogen (N-2) injection show that a presence of active ICRF antenna close to the midplane injection valve has little effect on the core N content, both in dipole and in -90 degrees phasing. This indicates that the effect of ICRF on impurity transport across the scape-off-layer is small in JET compared to the dominant effect on impurity sources leading to increased impurity levels during ICRF operation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 289
Type of publication
journal article (281)
research review (7)
conference paper (1)
Type of content
peer-reviewed (289)
Author/Editor
Bykov, Igor (285)
Eriksson, Jacob, Dr, ... (285)
Frassinetti, Lorenzo (284)
Zychor, I (284)
Andersson Sundén, Er ... (284)
Conroy, Sean (284)
show more...
Sjöstrand, Henrik, 1 ... (284)
Rubel, Marek (283)
Ström, Petter (283)
Weckmann, Armin (283)
Cecconello, Marco (283)
Hellsten, Torbjörn (282)
Ericsson, Göran (282)
Possnert, Göran, 195 ... (282)
Weiszflog, Matthias (282)
Hjalmarsson, Anders (281)
Menmuir, Sheena (272)
Petersson, Per (269)
Bergsåker, Henric (250)
Rachlew, Elisabeth, ... (249)
Hellesen, Carl, 1980 ... (242)
Skiba, Mateusz, 1985 ... (242)
Binda, Federico, 198 ... (239)
Dzysiuk, Nataliia (213)
Johnson, Thomas (191)
Tholerus, Emmi (182)
Stefanikova, Estera (146)
Garcia-Carrasco, Alv ... (143)
Garcia Carrasco, Alv ... (139)
Elevant, Thomas (136)
Ivanova, Darya (136)
Ratynskaia, Svetlana (126)
Olivares, Pablo Vall ... (125)
Tolias, Panagiotis (122)
Asp, E (108)
Zhou, Yushun (90)
Zhou, Yushan (56)
Dzysiuk, N. (54)
Binda, F. (41)
Skiba, M. (41)
Hellesen, C (40)
Rachlew, Elisabeth (35)
Bergsåker, Henrik (34)
Zoletnik, S (28)
Likonen, J (25)
Nordman, Hans, 1957 (25)
Strand, Pär, 1968 (25)
Huber, A (24)
Murari, A (24)
Bonanomi, N. (24)
show less...
University
Royal Institute of Technology (289)
Uppsala University (288)
Chalmers University of Technology (28)
Language
English (289)
Research subject (UKÄ/SCB)
Natural sciences (288)
Engineering and Technology (18)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view