SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bhattacharjee A) srt2:(2005-2009)"

Sökning: WFRF:(Bhattacharjee A) > (2005-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abazov, V. M., et al. (författare)
  • The upgraded DO detector
  • 2006
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 565:2, s. 463-537
  • Tidskriftsartikel (refereegranskat)abstract
    • The DO experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid -argon calorimeters and central muon detector, remaining from Run 1, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DO.
  •  
2.
  • Chen, Li-Jen, et al. (författare)
  • Evidence of an extended electron current sheet and its neighboring magnetic island during magnetotail reconnection
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A12, s. A12213-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have identified a spatially extended electron current sheet (ECS) and its adjacent magnetic island during a magnetotail reconnection event with no appreciable guide field. This finding is based on data from the four Cluster spacecraft and is enabled by detailed maps of electron distribution functions and DC electric fields within the diffusion region. The maps are developed using two-dimensional particle-in-cell simulations with a mass ratio m(i)/m(e) = 800. One spacecraft crossed the ECS earthward of the reconnection null and, together with the other three spacecraft, registered the following properties: (1) The ECS is colocated with a layer of bipolar electric fields normal to the ECS, pointing toward the ECS, and with a half width less than 8 electron skin depths. (2) In the inflow region up to the ECS and separatrices, electrons have a temperature anisotropy (Te-parallel to/Te-perpendicular to > 1), and the anisotropy increases toward the ECS. (3) Within about 1 ion skin depth (d(i)) above and below the ECS, the electron density decreases toward the ECS by a factor of 3-4, reaching a minimum at edges of the ECS, and has a local distinct maximum at the ECS center. (4) A di-scale magnetic island is attached to the ECS, separating it from another reconnection layer. Our simulations established that the electric field normal to the ECS is due to charge imbalance and is of the ECS scale, and ions exhibit electron-scale structures in response to this electric field.
  •  
3.
  • Chen, Li-Jen, et al. (författare)
  • Observation of energetic electrons within magnetic islands
  • 2008
  • Ingår i: Nature Physics. - : Nature Publishing Group. - 1745-2473 .- 1745-2481. ; 4:1, s. 19-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic reconnection is the underlying process that releases impulsively an enormous amount of magnetic energy(1) in solar flares(2,3), flares on strongly magnetized neutron stars(4) and substorms in the Earth's magnetosphere(5). Studies of energy release during solar flares, in particular, indicate that up to 50% of the released energy is carried by accelerated 20-100 keV suprathermal electrons(6-8). How so many electrons can gain so much energy during reconnection has been a long-standing question. A recent theoretical study suggests that volume-filling contracting magnetic islands formed during reconnection can produce a large number of energetic electrons(9). Here we report the first evidence of the link between energetic electrons and magnetic islands during reconnection in the Earth's magnetosphere. The results indicate that energetic electron fluxes peak at sites of compressed density within islands, which imposes a new constraint on theories of electron acceleration.
  •  
4.
  • El-Sheikh, A, et al. (författare)
  • A selective tumor microvasculature thrombogen that targets a novel receptor complex in the tumor angiogenic microenvironment
  • 2005
  • Ingår i: Cancer Research. - 1538-7445. ; 65:23, s. 11109-11117
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that part of the heparin-binding domain of the vascular endothelial growth factor (VEGF), designated HBDt, localizes very selectively to surfaces of the endothelial cells of U blood vessels. Here, we have coupled the HBDt to the extracellular domain of tissue factor (TFt), to locally initiate the thrombogenic cascade. In tumor-bearing mice, infusion of this HBDt.TFt results in rapid occlusive thrombosis selective only for tumor microvasculature with resultant infarctive destruction of tumors. We now show that infusion of an optimal combination of this HBDt.TFt and its requisite cofactor (factor VIIa) in tumor models results in significant tumor eradication. Binding studies and confocal microscopy indicate that the target for the HBDt.TFt seems to be a trimolecular complex of chondroitin C sulfate proteoglycan, neuropilin-1, and VEGF receptor-2, overexpressed together only in highly angiogenic sites of the tumor microenvironment. The HBDt.TFt was also colocalized with the trimolecular receptor complex in endothelial sprouts from tumor tissues, and its binding inhibited the growth of such sprouts. In vitro, we show that the HBDt structure has its highest affinity for chondroitin 6 sulfate. We show the potential of this HBDt.TFt as a candidate therapeutic and elucidate its target in vivo.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy