SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bonde Niels) srt2:(2020-2022)"

Sökning: WFRF:(Bonde Niels) > (2020-2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Charpentier Ljungqvist, Fredrik, 1982-, et al. (författare)
  • Regional Patterns of Late Medieval and Early Modern European Building Activity Revealed by Felling Dates
  • 2022
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media SA. - 2296-701X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Although variations in building activity are a useful indicator of societal well-being and demographic development, historical datasets for larger regions and longer periods are still rare. Here, we present 54,045 annually precise dendrochronological felling dates from historical construction timber from across most of Europe between 1250 and 1699 CE to infer variations in building activity. We use geostatistical techniques to compare spatiotemporal dynamics in past European building activity against independent demographic, economic, social and climatic data. We show that the felling dates capture major geographical patterns of demographic trends, especially in regions with dense data coverage. A particularly strong negative association is found between grain prices and the number of felling dates. In addition, a significant positive association is found between the number of felling dates and mining activity. These strong associations, with well-known macro-economic indicators from pre-industrial Europe, corroborate the use of felling dates as an independent source for exploring large-scale fluctuations of societal well-being and demographic development. Three prominent examples are the building boom in the Hanseatic League region of northeastern Germany during the 13th century, the onset of the Late Medieval Crisis in much of Europec. 1300, and the cessation of building activity in large parts of central Europe during armed conflicts such as the Thirty Years’ War (1618–1648 CE). Despite new insights gained from our European-wide felling date inventory, further studies are needed to investigate changes in construction activity of high versus low status buildings, and of urban versus rural buildings, and to compare those results with a variety of historical documentary sources and natural proxy archives.
  •  
2.
  • Sulej, Tomasz, et al. (författare)
  • The earliest-known mammaliaform fossil from Greenland sheds light on origin of mammals
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:43, s. 26861-26867
  • Tidskriftsartikel (refereegranskat)abstract
    • Synapsids are unique in having developed multirooted teeth and complex occlusions. These innovations evolved in at least two lineages of mammaliamorphs (Tritylodontidae and Mammaliaformes). Triassic fossils demonstrate that close to the origins of mammals, mammaliaform precursors were "experimenting" with tooth structure and function, resulting in novel patterns of occlusion. One of the most surprising examples of such adaptations is present in the haramiyidan Glade, which differed from contemporary mammaliaforms in having two rows of cusps on molariform crowns adapted to omnivorous/herbivorous feeding. However, the origin of the multicusped tooth pattern present in haramiyidans has remained enigmatic. Here we describe the earliest-known mandibular fossil of a mammaliaform with double molariform roots and a crown with two rows of cusps from the Late Triassic of Greenland. The crown morphology is intermediate between that of morganucodontans and haramiyidans and suggests the derivation of the multicusped molariforms of haramiyidans from the triconodont molar pattern seen in morganucodontids. Although it is remarkably well documented in the fossil record, the significance of tooth root division in mammaliaforms remains enigmatic. The results of our biomechanical analyses (finite element analysis [FEA]) indicate that teeth with two roots can better withstand stronger mechanical stresses like those resulting from tooth occlusion, than teeth with a single root.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy