SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Botha M. M.) srt2:(2007-2009)"

Search: WFRF:(Botha M. M.) > (2007-2009)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Saheed, Sefiu, et al. (author)
  • Stronger induction of callose deposition in barley by Russian wheat aphid than bird cherry-oat aphid is not associated with differences in callose synthase or beta-1,3-glucanase transcript abundance
  • 2009
  • In: Physiologia Plantarum. - : Wiley. - 0031-9317 .- 1399-3054. ; 135:2, s. 150-161
  • Journal article (peer-reviewed)abstract
    • The effects of infestation by the bird cherry-oat aphid (BCA), (Rhopalosiphum padi L) and the Russian wheat aphid (RWA) (Diuraphis noxia Mordvilko) on callose deposition and transcription of genes related to callose accumulation were investigated in barley (Hordeum vulgare L. cv. Clipper). The BCA, which gives no visible symptoms, induced very limited callose deposition, even after 14 days of infestation. In contrast, RWA, which causes chlorosis, white and yellow streaking and leaf rolling, induced callose accumulation already after 24 h in longitudinal leaf veins. The deposition was pronounced after 72 h, progressing during 7 and 14 days of infestation. In RWA-infested source leaves, callose was also induced in longitudinal veins basipetal to the aphid-infested tissue, whereas in sink leaves, more callose deposition was found above the feeding sites. Eight putative callose synthase genes were identified in a database search, of which seven were expressed in the leaves, but with similar transcript accumulation in control and aphid-infested tissue. Five out of 12 examined beta-1,3-glucanases were expressed in the leaves. All five were upregulated in RWA-infested tissue, but only two in BCA-infested tissue, and to a lesser extent than by RWA. The results suggest that callose accumulation may be partly responsible for the symptoms resulting from RWA infestation and that a callose-inducing signal may be transported in the phloem. Furthermore, it is concluded that the absence of callose deposition in BCA-infested leaves is not because of a stronger upregulation of callose-degrading beta-1,3-glucanases in this tissue, as compared to RWA-infested leaves.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view