SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bröjer Caroline) srt2:(2010-2014)"

Sökning: WFRF:(Bröjer Caroline) > (2010-2014)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bröjer, Caroline, et al. (författare)
  • Pathobiology and virus shedding of low-pathogenic avian influenza virus (A/H1N1) infection in mallards exposed to oseltamivir
  • 2013
  • Ingår i: Journal of Wildlife Diseases. - : Wildlife Disease Association. - 0090-3558 .- 1943-3700. ; 49:1, s. 103-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-pathogenic avian influenza (LPAI) viruses in wild birds are important as they can constitute the basis for the development of highly pathogenic avian influenza viruses or form part of human-adapted strains with pandemic potential. However, the pathogenesis of LPAI viruses is not well characterized in dabbling ducks, one of the natural reservoirs of LPAI viruses. Between 21 September 2009 and 21 December 2009, we used real-time reverse transcriptase polymerase chain reaction (q-PCR), histopathology, and immunohistochemistry (IHC) to study Mallards (Anas platyrhynchos) infected with an influenza A/H1N1 virus isolated from a wild Mallard in Sweden. The ducks were either inoculated intraesophageally ("artificial infection") or infected by virus shed by other ducks in the experiment ("contact infection"). The ducks were subjected to three low concentrations (80 ng/L, 1 mu g/L, and 80 mu g/L) of the active metabolite of oseltamivir (Tamiflu (R)), oseltamivir carboxylate (OC), which resulted in the development of the viral resistance mutation H274Y at 1 and 80 mu g/L. The LPAI virus infection was localized to the intestinal tract and cloacal bursa except in one Mallard. The exception was a duck euthanized 1 day postinoculation, whose infection was located solely in the lung, possibly due to intratracheal deposition of virus. The intestinal infection was characterized by occasional degenerating cells in the lamina propria and presence of viral antigen as detected by IHC, as well as positive q-PCR performed on samples from feces and intestinal contents. Histopathologic changes, IHC positivity, and viral shedding all indicated that the infection peaked early, around 2 days postinfection. Furthermore, more viral antigen and viral RNA were detected with IHC and q-PCR in the proximal parts early in the infection. There was no obvious difference in the course of the infection in artificial versus contact infection, when the level of OC was increased from 80 ng/L to 1 mu g/L (based on IHC and q-PCR), when the level of OC was increased to 80 mu/L, or when the resistance mutation H274Y developed (based on q-PCR).
  •  
3.
  • Bröjer, Caroline (författare)
  • Pathobiology of avian influenza in wild bird species
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Avian influenza viruses, especially highly pathogenic avian influenza viruses (HPAIV), affect a wide range of species, including humans and have thus become a major concern for veterinary medicine and public health. A HPAIV-H5N1 belonging to clade 2.2, originally from South East Asia, spread across Eurasia and reached Sweden in 2006. Currently the most commonly isolated HPAIV-H5N1 from wild birds belong to clade 2.3.2. There is a growing concern that the H5N1 virus has evolved in such a way that it can be maintained in the wild bird population without causing severe disease. At the same time the role of natural hosts, such as mallards (Anas platyrhynchos), in the epidemiology of avian influenza is an ongoing concern. In order to characterize the natural disease in free ranging birds in Sweden and to assess the pathogenicity of clade 2.3.2 viruses, histopathology, polymerase chain reaction, virus isolation and immunohistochemistry (IHC) were used to investigate lesions and viral tissue targeting of HPAIV-H5N1 in naturally infected tufted ducks (Aythya fuligula) and in tufted ducks experimentally infected with a clade 2.3.2 virus. Since neurotropism is a key feature of HPAIV-H5N1 infection, the encephalitis in 9 wild bird species from the Swedish outbreak was characterized in more detail. Results were compared to mallards infected with a low pathogenic avian influenza virus H1N1. The studies highlight the range and variation of the presentation of the natural disease in wild birds. Experimentally infected ducks were highly susceptible to the current HPAIV-H5N1 clade and showed similar lesions and viral antigen distribution as the naturally infected ducks. The studies suggest that there are several routes of infection and dissemination of the virus including, respiratory, hematogenous and olfactory routes. The respiratory tract is probably the main route of excretion of HPAIV-H5N1 since no viral antigen was found in the intestine. This was in contrast to the experimentally infected mallards which had primarily intestinal replication with minimal lesions. The results highlight the importance of continued investigation of the pathobiology of both low- and HPAIV infections in wild birds which is essential in the understanding of their epidemiology and, in turn, can contribute to the design and implementation of preventive and control measures to protect the health of humans and animals.
  •  
4.
  • Fossum, Caroline, et al. (författare)
  • Expression of tlr4, md2 and cd14 in equine blood leukocytes during endotoxin infusion and in intestinal tissues from healthy horses
  • 2012
  • Ingår i: Veterinary Immunology and Immunopathology. - : Elsevier BV. - 0165-2427 .- 1873-2534. ; 150:3-4, s. 141-148
  • Tidskriftsartikel (refereegranskat)abstract
    • The expression of tlr4, md2 and cd14 was studied in equine blood leukocytes and in intestinal samples using real time PCR. The stability of three commonly used reference genes, glyceraldehyde-3P-dehydrogenase (GAPDH), hypoxantine ribosyltransferase (HPRT) and succinate dehydrogenase complex subunit A (SDHA), was evaluated using qbase(PLUS). The equine peripheral blood mononuclear cells (eqPBMC) examined were either stimulated in vitro with Phorbol 12-myristate 13-acetate (PMA) and ionomycin or with the CpG oligodeoxynuclotide 2216 (CpG-ODN 2216) or obtained from horses before, during and after infusion of endotoxin. Intestinal tissue from healthy horses was sampled at ileum, right dorsal colon and rectum. Ranking of the three reference genes used for normalisation identified the combination HPRT/SDHA as most suitable both when determined ex vivo in leukocytes obtained from experimentally induced endotoxaemia and in eqPBMC activated in vitro while HPRT/GAPDH were most appropriate for the intestinal samples. The relative amounts of mRNA for TLR4 and MD-2 increased threefold during in vitro activation of the cells with CpG-ODN 2216 but was decreased in cultures stimulated with PMA/ionomycin. A transient elevation in the transcription of tlr4 and md2 was also evident for equine blood leukocytes following endotoxaemia. The levels of mRNA for CD14 on the other hard remained unaffected both during the induction of endotoxaemia and in the in vitro stimulated PBMCs. A low steady expression of TLR4, MD-2 and CD14 mRNA was demonstrated for the intestinal samples with no variation between the intestinal segments analysed. Thus, the foundation for real time PCR based levels of analysis of mRNA for all three components in the equine LPS receptor complex in different intestinal segments was set, making it possible to carry out future expression studies on clinical material.
  •  
5.
  • Gillman, Anna, et al. (författare)
  • Resistance Mutation R292K Is Induced in Influenza A(H6N2) Virus by Exposure of Infected Mallards to Low Levels of Oseltamivir
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Resistance to neuraminidase inhibitors (NAIs) is problematic as these drugs constitute the major treatment option for severe influenza. Extensive use of the NAI oseltamivir (Tamiflu(R)) results in up to 865 ng/L of its active metabolite oseltamivir carboxylate (OC) in river water. There one of the natural reservoirs of influenza A, dabbling ducks, can be exposed. We previously demonstrated that an influenza A(H1N1) virus in mallards (Anas platyrhynchos) exposed to 1 mu g/L of OC developed oseltamivir resistance through the mutation H274Y (N2-numbering). In this study, we assessed the resistance development in an A(H6N2) virus, which belongs to the phylogenetic N2 group of neuraminidases with distinct functional and resistance characteristics. Mallards were infected with A(H6N2) while exposed to 120 ng/L, 1.2 mu g/L or 12 mu g/L of OC in their sole water source. After 4 days with 12 mu g/L of OC exposure, the resistance mutation R292K emerged and then persisted. Drug sensitivity was decreased approximate to 13,000-fold for OC and approximate to 7.8-fold for zanamivir. Viral shedding was similar when comparing R292K and wild-type virus indicating sustained replication and transmission. Reduced neuraminidase activity and decrease in recovered virus after propagation in embryonated hen eggs was observed in R292K viruses. The initial, but not the later R292K isolates reverted to wild-type during egg-propagation, suggesting a stabilization of the mutation, possibly through additional mutations in the neuraminidase (D113N or D141N) or hemagglutinin (E216K). Our results indicate a risk for OC resistance development also in a N2 group influenza virus and that exposure to one NAI can result in a decreased sensitivity to other NAIs as well. If established in influenza viruses circulating among wild birds, the resistance could spread to humans via re-assortment or direct transmission. This could potentially cause an oseltamivir-resistant pandemic; a serious health concern as preparedness plans rely heavily on oseltamivir before vaccines can be mass-produced.
  •  
6.
  • Jourdain, Elsa, et al. (författare)
  • Influenza Virus in a Natural Host, the Mallard : Experimental Infection Data
  • 2010
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Wild waterfowl, particularly dabbling ducks such as mallards (Anas platyrhynchos), are considered the main reservoir of low-pathogenic avian influenza viruses (LPAIVs). They carry viruses that may evolve and become highly pathogenic for poultry or zoonotic. Understanding the ecology of LPAIVs in these natural hosts is therefore essential. We assessed the clinical response, viral shedding and antibody production of juvenile mallards after intra-esophageal inoculation of two LPAIV subtypes previously isolated from wild congeners. Six ducks, equipped with data loggers that continually monitored body temperature, heart rate and activity, were successively inoculated with an H7N7 LPAI isolate (day 0), the same H7N7 isolate again (day 21) and an H5N2 LPAI isolate (day 35). After the first H7N7 inoculation, the ducks remained alert with no modification of heart rate or activity. However, body temperature transiently increased in four individuals, suggesting that LPAIV strains may have minor clinical effects on their natural hosts. The excretion patterns observed after both reinoculations differed strongly from those observed after the primary H7N7 inoculation, suggesting that not only homosubtypic but also heterosubtypic immunity exist. Our study suggests that LPAI infection has minor clinically measurable effects on mallards and that mallard ducks are able to mount immunological responses protective against heterologous infections. Because the transmission dynamics of LPAIVs in wild populations is greatly influenced by individual susceptibility and herd immunity, these findings are of high importance. Our study also shows the relevance of using telemetry to monitor disease in animals.
  •  
7.
  • Järhult, Josef D., et al. (författare)
  • Environmental levels of the antiviral oseltamivir induce development of resistance mutation H274Y in influenza A/H1N1 virus in mallards
  • 2011
  • Ingår i: PLOS ONE. - San Francisco, CA : Public Library of Science (PLoS). - 1932-6203. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008-2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC₅₀ for OC was increased from 2-4 nM in wild-type viruses to 400-700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58-293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy