SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brant R) srt2:(2020-2024)"

Sökning: WFRF:(Brant R) > (2020-2024)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eijsbouts, C., et al. (författare)
  • Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders
  • 2021
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 53:11, s. 1543-1552
  • Tidskriftsartikel (refereegranskat)abstract
    • Irritable bowel syndrome (IBS) results from disordered brain–gut interactions. Identifying susceptibility genes could highlight the underlying pathophysiological mechanisms. We designed a digestive health questionnaire for UK Biobank and combined identified cases with IBS with independent cohorts. We conducted a genome-wide association study with 53,400 cases and 433,201 controls and replicated significant associations in a 23andMe panel (205,252 cases and 1,384,055 controls). Our study identified and confirmed six genetic susceptibility loci for IBS. Implicated genes included NCAM1, CADM2, PHF2/FAM120A, DOCK9, CKAP2/TPTE2P3 and BAG6. The first four are associated with mood and anxiety disorders, expressed in the nervous system, or both. Mirroring this, we also found strong genome-wide correlation between the risk of IBS and anxiety, neuroticism and depression (rg > 0.5). Additional analyses suggested this arises due to shared pathogenic pathways rather than, for example, anxiety causing abdominal symptoms. Implicated mechanisms require further exploration to help understand the altered brain–gut interactions underlying IBS. © 2021, The Author(s).
  •  
2.
  •  
3.
  • Tapia-Ruiz, Nuria, et al. (författare)
  • 2021 roadmap for sodium-ion batteries
  • 2021
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 2515-7655. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing concerns regarding the sustainability of lithium sources, due to their limited availability and consequent expected price increase, have raised awareness of the importance of developing alternative energy-storage candidates that can sustain the ever-growing energy demand. Furthermore, limitations on the availability of the transition metals used in the manufacturing of cathode materials, together with questionable mining practices, are driving development towards more sustainable elements. Given the uniformly high abundance and cost-effectiveness of sodium, as well as its very suitable redox potential (close to that of lithium), sodium-ion battery technology offers tremendous potential to be a counterpart to lithium-ion batteries (LIBs) in different application scenarios, such as stationary energy storage and low-cost vehicles. This potential is reflected by the major investments that are being made by industry in a wide variety of markets and in diverse material combinations. Despite the associated advantages of being a drop-in replacement for LIBs, there are remarkable differences in the physicochemical properties between sodium and lithium that give rise to different behaviours, for example, different coordination preferences in compounds, desolvation energies, or solubility of the solid-electrolyte interphase inorganic salt components. This demands a more detailed study of the underlying physical and chemical processes occurring in sodium-ion batteries and allows great scope for groundbreaking advances in the field, from lab-scale to scale-up. This roadmap provides an extensive review by experts in academia and industry of the current state of the art in 2021 and the different research directions and strategies currently underway to improve the performance of sodium-ion batteries. The aim is to provide an opinion with respect to the current challenges and opportunities, from the fundamental properties to the practical applications of this technology.
  •  
4.
  • Feng, Shaohong, et al. (författare)
  • Dense sampling of bird diversity increases power of comparative genomics
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587:7833
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  •  
5.
  • Wightman, D. P., et al. (författare)
  • A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease
  • 2021
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 53:9, s. 1276-1282
  • Tidskriftsartikel (refereegranskat)abstract
    • Late-onset Alzheimer’s disease is a prevalent age-related polygenic disease that accounts for 50–70% of dementia cases. Currently, only a fraction of the genetic variants underlying Alzheimer’s disease have been identified. Here we show that increased sample sizes allowed identification of seven previously unidentified genetic loci contributing to Alzheimer’s disease. This study highlights microglia, immune cells and protein catabolism as relevant to late-onset Alzheimer’s disease, while identifying and prioritizing previously unidentified genes of potential interest. We anticipate that these results can be included in larger meta-analyses of Alzheimer’s disease to identify further genetic variants that contribute to Alzheimer’s pathology.
  •  
6.
  • B. Brant Carvalho, Paulo H., et al. (författare)
  • Structural investigation of three distinct amorphous forms of Ar hydrate
  • 2021
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 11:49, s. 30744-30754
  • Tidskriftsartikel (refereegranskat)abstract
    • Three amorphous forms of Ar hydrate were produced using the crystalline clathrate hydrate Ar·6.5H2O (structure II, Fd3m, a ≈ 17.1 Å) as a precursor and structurally characterized by a combination of isotope substitution (36Ar) neutron diffraction and molecular dynamics (MD) simulations. The first form followed from the pressure-induced amorphization of the precursor at 1.5 GPa at 95 K and the second from isobaric annealing at 2 GPa and subsequent cooling back to 95 K. In analogy to amorphous ice, these amorphs are termed high-density amorphous (HDA) and very-high-density amorphous (VHDA), respectively. The third amorph (recovered amorphous, RA) was obtained when recovering VHDA to ambient pressure (at 95 K). The three amorphs have distinctly different structures. In HDA the distinction of the original two crystallographically different Ar guests is maintained as differently dense Ar–water hydration structures, which expresses itself in a split first diffraction peak in the neutron structure factor function. Relaxation of the local water structure during annealing produces a homogeneous hydration environment around Ar, which is accompanied with a densification by about 3%. Upon pressure release the homogeneous amorphous structure undergoes expansion by about 21%. Both VHDA and RA can be considered frozen solutions of immiscible Ar and water in which in average 15 and 11 water molecules, respectively, coordinate Ar out to 4 Å. The local water structures of HDA and VHDA Ar hydrates show some analogy to those of the corresponding amorphous ices, featuring H2O molecules in 5- and 6-fold coordination with neighboring molecules. However, they are considerably less dense. Most similarity is seen between RA and low density amorphous ice (LDA), which both feature strictly 4-coordinated H2O networks. It is inferred that, depending on the kind of clathrate structure and occupancy of cages, amorphous states produced from clathrate hydrates display variable local water structures.
  •  
7.
  • Boras, Dominik, et al. (författare)
  • Determining internal porosity in Prussian blue analogue cathode materials using positron annihilation lifetime spectroscopy
  • 2023
  • Ingår i: Journal of Materials Science. - : Springer Nature. - 0022-2461 .- 1573-4803. ; 58:42, s. 16344-16356
  • Tidskriftsartikel (refereegranskat)abstract
    • Prussian blue analogues (PBAs), AxM[M’(CN)6]1–y·zH2O, are a highly functional class of materials with use in a broad range of applications, such as energy storage, due to their porous structure and tunable composition. The porosity is particularly important for the properties and is deeply coupled to the cation, water, and [M’(CN)6]n– vacancy content. Determining internal porosity is especially challenging because the three compositional parameters are dependent on each other. In this work, we apply a new method, positron annihilation lifetime spectroscopy (PALS), which can be employed for the characterization of defects and structural changes in crystalline materials. Four samples were prepared to evaluate the method’s ability to detect changes in internal porosity as a function of the cation, water, and [M’(CN)6]n– vacancy content. Three of the samples have identical [M’(CN)6]n– vacancy content and gradually decreasing sodium and water content, while one sample has no sodium and 25% [M’(CN)6]n– vacancies. The samples were thoroughly characterized using inductively coupled plasma-optical emission spectroscopy (ICP-OES), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Mössbauer spectroscopy as well as applying the PALS method. Mössbauer spectroscopy, XRD, and TGA analysis revealed the sample compositions Na1.8(2)Fe2+0.64(6)Fe2.6+0.36(10)[Fe2+(CN)6]·2.09(2)H2O, Na1.1(2)Fe2+0.24(6)Fe2.8+0.76(6)[Fe2.3+(CN)6]·1.57(1)H2O, Fe[Fe(CN)6]·0.807(9)H2O, and Fe[Fe(CN)6]0.75·1.5H2O, confirming the absence of vacancies in the three main samples. It was shown that the final composition of PBAs could only be unambiguously confirmed through the combination of ICP, XRD, TGA, and Mössbauer spectroscopy. Two positron lifetimes of 205 and 405 ps were observed with the 205 ps lifetime being independent of the sodium, water, and/or [Fe(CN)6]n– vacancy content, while the lifetime around 405 ps changes with varying sodium and water content. However, the origin and nature of the 405 ps lifetime yet remains unclear. The method shows promise for characterizing changes in the internal porosity in PBAs as a function of the composition and further development work needs to be carried out to ensure the applicability to PBAs generally.
  •  
8.
  • Brant, Luisa C. C., et al. (författare)
  • Association Between Electrocardiographic Age and Cardiovascular Events in Community Settings : The Framingham Heart Study
  • 2023
  • Ingår i: Circulation. Cardiovascular Quality and Outcomes. - : Ovid Technologies (Wolters Kluwer Health). - 1941-7713 .- 1941-7705. ; 16:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Deep neural networks have been used to estimate age from ECGs, the electrocardiographic age (ECG-age), which predicts adverse outcomes. However, this prediction ability has been restricted to clinical settings or relatively short periods. We hypothesized that ECG-age is associated with death and cardiovascular outcomes in the long-standing community-based FHS (Framingham Heart Study).METHODS: We tested the association of ECG-age with chronological age in the FHS cohorts in ECGs from 1986 to 2021. We calculated the gap between chronological and ECG-age (& UDelta;age) and classified individuals as having normal, accelerated, or decelerated aging, if & UDelta;age was within, higher, or lower than the mean absolute error of the model, respectively. We assessed the associations of & UDelta;age, accelerated and decelerated aging with death or cardiovascular outcomes (atrial fibrillation, myocardial infarction, and heart failure) using Cox proportional hazards models adjusted for age, sex, and clinical factors.RESULTS:The study population included 9877 FHS participants (mean age, 55 & PLUSMN;13 years; 54.9% women) with 34 948 ECGs. ECG-age was correlated to chronological age (r=0.81; mean absolute error, 9 & PLUSMN;7 years). After 17 & PLUSMN;8 years of follow-up, every 10-year increase of & UDelta;age was associated with 18% increase in all-cause mortality (hazard ratio [HR], 1.18 [95% CI, 1.12-1.23]), 23% increase in atrial fibrillation risk (HR, 1.23 [95% CI, 1.17-1.29]), 14% increase in myocardial infarction risk (HR, 1.14 [95% CI, 1.05-1.23]), and 40% increase in heart failure risk (HR, 1.40 [95% CI, 1.30-1.52]), in multivariable models. In addition, accelerated aging was associated with a 28% increase in all-cause mortality (HR, 1.28 [95% CI, 1.14-1.45]), whereas decelerated aging was associated with a 16% decrease (HR, 0.84 [95% CI, 0.74-0.95]).CONCLUSIONS:ECG-age was highly correlated with chronological age in FHS. The difference between ECG-age and chronological age was associated with death, myocardial infarction, atrial fibrillation, and heart failure. Given the wide availability and low cost of ECG, ECG-age could be a scalable biomarker of cardiovascular risk.
  •  
9.
  • Brant, William R., et al. (författare)
  • Local structure transformations promoting high lithium diffusion in defect perovskite type structures
  • 2023
  • Ingår i: Electrochimica Acta. - : Elsevier. - 0013-4686 .- 1873-3859. ; 441
  • Tidskriftsartikel (refereegranskat)abstract
    • Defect perovskites, AxBO3 such as (Li3xLa2/3-x)TiO3, are attracting attention as high capacity electrodes in lithium-ion batteries. However, the mechanism enabling high lithium storage capacities has not been fully investigated. In this work, the reversible insertion and removal of lithium up to an average A-site cavity occupancy of 1.71 in the defect perovskite (Li0.18Sr0.66)(Ti0.5Nb0.5)O3 is investigated. It was shown that subtle lithium reorganization during lithiation has a significant impact on enabling high capacity. Contrary to previous studies, lithium was coordinated to triangular faces of Ti/Nb oxygen octahedra and offset from O4 windows between A-site cavities in the as-synthesised material. Upon electrochemical lithiation Li-Li repulsion redistributes of all the lithium towards the O4 window position resulting in a loss of lithium mobility. Surprisingly, the mobility is regained during over-lithiation and following multiple electrochemical cycles. It is suggested that lithium reorganisation into the center of the O4 window alleviates the Li-Li repulsion and modifies the diffusion behavior from site percolation to bond percolation. The results obtained provide valuable insight into the chemical drivers enabling higher capacities and enhanced diffusion in defect perovskites. More broadly the study delivers fundamental understanding on the non-equilibrium structural transformations occurring within electrode materials during repeated electrochemical cycles.
  •  
10.
  • Chen, Heyin, et al. (författare)
  • Investigating Surface Reactivity of a Ni-Rich Cathode Material toward CO2, H2O, and O2 Using Ambient Pressure X-ray Photoelectron Spectroscopy
  • 2023
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 6:22, s. 11458-11467
  • Tidskriftsartikel (refereegranskat)abstract
    • Layered Ni-rich transition metal oxide materials are considered the most promising cathodes for use in commercial Li-ion batteries. Due to their instability in air, an impurity layer forms during storage under ambient conditions, and this layer increases electrochemical polarization during charging and discharging, which ultimately leads to a lower cycling capacity. In this work, we found that storage of the LiNi0.8Mn0.1Co0.1O2 (NMC 811) material in ultrahigh vacuum (UHV) can restore the surface by reducing the amount of native carbonate species in the impurity layer. In this work, in situ soft X-ray ambient pressure photoelectron spectroscopy is used to directly follow the interaction between common gases found in air and the NMC 811 surface. During gas exposure of the NMC 811 surface to pure CO2, O2, and a mixture of both pure gases, surface-adsorbed CO2 or/and O2 were detected; however, permanent changes could not be identified under UHV after the gas exposure. In contrast, a permanent increase in metal hydroxide species was observed on the sample surface following H2O vapor exposure, and an increased intensity in the carboxylate peak was observed after exposure to a mixture of CO2/O2/H2O. Thus, the irreversible degradation reaction with CO2 is triggered in the presence of H2O (on relevant time scales defined by the experiment). Additional measurements revealed that X-ray irradiation induces the formation of metal carbonate species on the NMC 811 surface under CO2 and H2O vapor pressure.
  •  
11.
  • Chien, Yu-Chuan, 1990-, et al. (författare)
  • Impact of Compression on the Electrochemical Performance of the Sulfur/Carbon Composite Electrode in Lithium-Sulfur Batteries
  • 2022
  • Ingår i: Batteries & Supercaps. - : Wiley-VCH Verlagsgesellschaft. - 2566-6223. ; 5:7
  • Tidskriftsartikel (refereegranskat)abstract
    • While lithium-sulfur batteries theoretically have both high gravimetric specific energy and volumetric energy density, only its specific energy has been experimentally demonstrated to surpass that of the state-of-the-art lithium-ion systems at cell level. One major reason for the unrealized energy density is the low capacity density of the highly porous sulfur/carbon composite as the positive electrode. In this work, mechanical compression at elevated temperature is demonstrated to be an effective method to increase the capacity density of the electrode by at least 90 % and moreover extends its cycle life. Distinct impacts of compression on the resistance profiles of electrodes with different thickness are investigated by tortuosity factors derived from both electrochemical impedance spectroscopy, X-ray computed tomography and kinetic analysis based on operando X-ray diffraction. The results highlights the importance of a homogeneous electrode structure highlight lithium-sulfur system.
  •  
12.
  • Chien, Yu-Chuan, 1990-, et al. (författare)
  • Rapid determination of solid-state diffusion coefficients in Li-based batteries via intermittent current interruption method
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The galvanostatic intermittent titration technique (GITT) is considered the go-to method for determining the Li+ diffusion coefficients in insertion electrode materials. However, GITT-based methods are either time-consuming, prone to analysis pitfalls or require sophisticated interpretation models. Here, we propose the intermittent current interruption (ICI) method as a reliable, accurate and faster alternative to GITT-based methods. Using Fick’s laws, we prove that the ICI method renders the same information as the GITT within a certain duration of time since the current interruption. Via experimental measurements, we also demonstrate that the results from ICI and GITT methods match where the assumption of semi-infinite diffusion applies. Moreover, the benefit of the non-disruptive ICI method to operando materials characterization is exhibited by correlating the continuously monitored diffusion coefficient of Li+ in a LiNi0.8Mn0.1Co0.1O2-based electrode to its structural changes captured by operando X-ray diffraction measurements.
  •  
13.
  • Cladek, Bernadette R., et al. (författare)
  • In situ inelastic neutron scattering of mixed CH4–CO2 hydrates
  • 2022
  • Ingår i: Fuel. - : Elsevier BV. - 0016-2361 .- 1873-7153. ; 327
  • Tidskriftsartikel (refereegranskat)abstract
    • An abundant source of CH4 can be found in natural hydrate deposits. Recent demonstration of CH4 recovery from hydrates via CO2 exchange has revealed the potential as a fuel source that also provides a medium for carbon sequestration. It is vital to understand the structural and dynamic impacts of guest variation in CH4, CO2, and mixed hydrates and link the results to the stability of various deposits in nature, harvesting methane, and sequestering CO2. Molecular vibrations are examined in CH4, CO2, and mixed CH4-CO2 hydrates at 5 and 190 K and Xe hydrates for comparison. Inelastic neutron scattering (INS) is an ideal spectroscopy technique to observe the dynamic modes in the hydrate structure and enclathrated CH4, as it is extremely sensitive to 1H. The presence of CO2 in hydrates tightens the lattice. It introduces more active librational modes to the host lattice, while hindering the motion of CH4 in mixed CH4-CO2 hydrate at 5 K. At 190 K, a large broadening of the CH4 librational modes indicates disorder in the structure leading to dissociation.
  •  
14.
  • Gustafsson, Olof, et al. (författare)
  • Design and Operation of an Operando Synchrotron Diffraction Cell Enabling Fast Cycling of Battery Materials
  • 2021
  • Ingår i: Batteries & Supercaps. - : John Wiley & Sons. - 2566-6223. ; 4:10, s. 1599-1604
  • Tidskriftsartikel (refereegranskat)abstract
    • Operation of a battery typically involves dynamic and non-equilibrium processes, making real time operando techniques crucial for understanding their nature. Operando X-ray diffraction is an important technique for investigating metastable intermediates and non-equilibrium phase transitions in crystalline electrode materials. Currently employed experimental setups often apply a disruptive approach to cell design, whereby the integrity of standard electrochemical cells is compromised to facilitate collection of high-quality diffraction data. Here, we present a non-disruptive approach to adapting the use of a standard pouch cell that enables fast and long-term cell cycling. Suitability of the setup is demonstrated on the well-studied cathode material LiNi0.5Mn1.5O4. While exhibiting comparable electrochemical behavior to a standard pouch cell up to a current rate of 8 C (∼6.6 mA cm−2), phase transitions could be monitored accurately. Thus, the cell provides a new alternative to investigating non-equilibrium transitions and long-term aging effects in battery materials.
  •  
15.
  • Heintz, Mads C., et al. (författare)
  • Photovoltaic Wafering Silicon Kerf Loss as Raw Material : Example of Negative Electrode for Lithium‐Ion Battery
  • 2023
  • Ingår i: ChemElectroChem. - : Wiley-VCH Verlagsgesellschaft. - 2196-0216. ; 10:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon powder kerf loss from diamond wire sawing in the photovoltaic wafering industry is a highly appealing source material for use in lithium-ion battery negative electrodes. Here, it is demonstrated for the first time that the kerf particles from three independent sources contain ~50 % amorphous silicon. The crystalline phase is in the shape of nano-scale crystalline inclusions in an amorphous matrix. From literature on wafering technology looking at wafer quality, the origin and mechanisms responsible for the amorphous content in the kerf loss powder are explained. In order to better understand for which applications the material could be a valuable raw material, the amorphicity and other relevant features are thoroughly investigated by a large amount of experimental methods. Furthermore, the kerf powder was crystallized and compared to the partly amorphous sample by operando X-ray powder diffraction experiments during battery cycling, demonstrating that the powders are relevant for further investigation and development for battery applications.
  •  
16.
  • Lavén, Rasmus, 1994, et al. (författare)
  • Vibrational properties of SrVO2 H with large spin-phonon coupling
  • 2022
  • Ingår i: Physical Review Materials. - 2475-9953. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The antiferromagnetic transition metal oxyhydride SrVO2H is distinguished by its stoichiometric composition and an ordered arrangement of H atoms. The tetragonal structure is related to the cubic perovskite and consists of alternating layers of VO2 and SrH. d2 V(III) attains a sixfold coordination by four O and two H atoms. The latter are arranged in a trans fashion, which produces H-V-H chains along the tetragonal axis. Here, we investigate the vibrational properties of SrVO2H by inelastic neutron scattering and infrared spectroscopy combined with phonon calculations based on density functional theory. The H-based vibrational modes divide into a degenerate bending motion perpendicular to the H-V-H chain direction and a highly dispersed stretching motion along the H-V-H chain direction. The bending motion, with a vibrational frequency of approximately 800 cm-1, is split into two components separated by about 50 cm-1, owing to the doubled unit cell from the antiferromagnetic structure. Interestingly, spin-phonon coupling stiffens the H-based modes by 50-100cm-1 although super-exchange coupling via H is very small. Frequency shifts of the same order of magnitude also occur for V-O modes. It is inferred that SrVO2H displays the hitherto largest recognized coupling between magnetism and phonons in a material.
  •  
17.
  • Mikheenkova, Anastasiia, et al. (författare)
  • Resolving high potential structural deterioration in Ni-rich layered cathode materials for lithium-ion batteries operando
  • 2023
  • Ingår i: Journal of Energy Storage. - : Elsevier. - 2352-152X .- 2352-1538. ; 57
  • Tidskriftsartikel (refereegranskat)abstract
    • LixNi0.90Co0.05Al0.05O2 (NCA) extracted from an automotive battery cell is studied using a combination of in-house operando techniques to understand the correlation between gas evolution and structural collapse when NCA is cycled to high potentials in a lithium-ion battery configuration. The operando techniques comprise X-ray diffraction (XRD) and online electrochemical mass spectrometry (OEMS), and cycled using intermittent current interruption (ICI). The ICI cycling protocol is used to assess the dynamic change in resistance as well as to provide a validation of the operando setups. Both gas evolution and structural collapse have previously been observed as degradation mechanisms of Ni-rich electrodes including NCA, however, their causal link is still under debate. Here our presented results show a correlation between the decrease of the interlayer distance in NCA with both an increase in CO2 evolution and diffusion resistance above 4.1 V. Additionally, particle cracking, which is a mechanism often correlated with gas evolution, was found to be reversible and visible before gas evolution and Li diffusion resistance increase. The ICI technique is shown to be useful for the correlation of operando experiments on parallel setups and evaluation of mass transport dependent processes.
  •  
18.
  • Mikheenkova, Anastasiia, et al. (författare)
  • Visualizing ageing-induced heterogeneity within large prismatic lithium-ion batteries for electric cars using diffraction radiography
  • 2024
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753 .- 1873-2755. ; 599
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, Synchrotron X-ray diffraction (XRD) radiography was utilized to investigate the ageing heterogeneity in 48 Ah prismatic lithium-ion cells with Ni-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) as the positive electrode active material and graphite as the negative electrode active material after ∼2800 cycles. The study revealed that the area closest to the positive electrode tab is most vulnerable to degradation, particularly impacting the NMC material. Application of principal component analysis allowed to differentiate and visualize part of positive electrode material that has a different degradation due to the lithium plating. A comparison of non-destructive X-ray diffraction-based methods and electrochemical characterization method which was performed on the opened cell has shown an importance of a complementary approach. Our results highlight the feasibility of employing non-destructive techniques to study large prismatic cells, thereby presenting extensive opportunities for advancements in battery research and industry.
  •  
19.
  • Mozhzhukhina, Nataliia, et al. (författare)
  • Short-range ordering in the Li-rich disordered rock salt cathode material Li2VO2F revealed by Raman spectroscopy
  • 2020
  • Ingår i: Journal of Raman Spectroscopy. - : Wiley. - 0377-0486 .- 1097-4555. ; 51:10, s. 2095-2101
  • Tidskriftsartikel (refereegranskat)abstract
    • Li‐rich disordered rock salt (DRS) materials are new promising high‐capacity cathode candidates for Li‐ion batteries. DRS structures were initially assumed to have a completely random cation and anion distribution, but recent reports suggest that some of these structures can exhibit local atomic arrangements, or short‐range ordering (SRO). Here, we prove the existence of SRO in the Li‐rich DRS material Li2VO2F by employing Raman spectroscopy supported by density functional theory (DFT) calculations. Our results suggest that this combination of Raman spectroscopy with computational tools is useful for SRO estimation in this new class of Li‐rich DRS cathode materials.
  •  
20.
  • Ojwang, Dickson O., et al. (författare)
  • Moisture-Driven Degradation Pathways in Prussian White Cathode Material for Sodium-Ion Batteries
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:8, s. 10054-10063
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-theoretical-capacity (∼170 mAh/g) Prussian white (PW), NaxFe[Fe(CN)6]y·nH2O, is one of the most promising candidates for Na-ion batteries on the cusp of commercialization. However, it has limitations such as high variability of reported stable practical capacity and cycling stability. A key factor that has been identified to affect the performance of PW is water content in the structure. However, the impact of airborne moisture exposure on the electrochemical performance of PW and the chemical mechanisms leading to performance decay have not yet been explored. Herein, we for the first time systematically studied the influence of humidity on the structural and electrochemical properties of monoclinic hydrated (M-PW) and rhombohedral dehydrated (R-PW) Prussian white. It is identified that moisture-driven capacity fading proceeds via two steps, first by sodium from the bulk material reacting with moisture at the surface to form sodium hydroxide and partial oxidation of Fe2+ to Fe3+. The sodium hydroxide creates a basic environment at the surface of the PW particles, leading to decomposition to Na4[Fe(CN)6] and iron oxides. Although the first process leads to loss of capacity, which can be reversed, the second stage of degradation is irreversible. Over time, both processes lead to the formation of a passivating surface layer, which prevents both reversible and irreversible capacity losses. This study thus presents a significant step toward understanding the large performance variations presented in the literature for PW. From this study, strategies aimed at limiting moisture-driven degradation can be designed and their efficacy assessed.
  •  
21.
  • van Ekeren, Wessel, et al. (författare)
  • A comparative analysis of the influence of hydrofluoroethers as diluents on solvation structure and electrochemical performance in non-flammable electrolytes
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 11:8, s. 4111-4125
  • Tidskriftsartikel (refereegranskat)abstract
    • To enhance battery safety, it is of utmost importance to develop non-flammable electrolytes. An emerging concept within this research field is the development of localized highly concentrated electrolytes (LHCEs). This type of liquid electrolyte relies on the concept of highly concentrated electrolytes (HCEs), but possesses lower viscosity, improved conductivity and reduced costs due to the addition of diluent solvents. In this work, two different hydrofluoroethers, i.e., bis(2,2,2-trifluoroethyl) ether (BTFE) and 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE), are studied as diluents in a phosphate-based non-flammable liquid electrolyte. These two solvents were added to a highly concentrated electrolyte of 3.0 M lithium bis(fluorosulfonyl)imide (LiFSI) in triethyl phosphate (TEP) whereby the salt concentration was diluted to 1.5 M. The solvation structures of the HCE and LHCE were studied by means of Raman spectroscopy and Nuclear Magnetic Resonance (NMR) spectroscopy, where the latter was shown to be essential to provide more detailed insights. By using molecular dynamics simulations, it was shown that a highly concentrated Li+-TEP solvation sheath is formed, which can be protected by the diluents TTE and BTFE. These simulations have also clarified the energetic interaction between the components in the LHCE, which supports the experimental results from the viscosity and the NMR measurements. By performing non-covalent interaction analysis (NCI) it was possible to show the main contributions of the observed chemical shifts, which indicated that TTE has a stronger effect on the solvation structure than BTFE. Moreover, the electrochemical performances of the electrolytes were evaluated in half-cells (Li|NMC622, Li|graphite), full-cells (NMC622|graphite) and Li metal cells (Li|Cu). Galvanostatic cycling has shown that the TTE based electrolyte performs better in full-cells and Li-metal cells, compared to the BTFE based electrolyte. Operando pressure measurements have indicated that no significant amount of gases is evolved in NMC622|graphite cells using the here presented LHCEs, while a cell with 1.0 M LiFSI in TEP displayed clear formation of gaseous products in the first cycles. The formation of gaseous products is accompanied by solvent co-intercalation, as shown by operando XRD, and quick cell failure. This work provides insights on understanding the solvation structure of LHCEs and highlights the relationship between electrochemical performance and pressure evolution.
  •  
22.
  • Zhang, Leiting, et al. (författare)
  • Reversible Hydration Enabling High-Rate Aqueous Li-Ion Batteries
  • 2024
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 9, s. 959-966
  • Tidskriftsartikel (refereegranskat)abstract
    • Layered TiS2 has been proposed as a versatile host material for various battery chemistries. Nevertheless, its compatibility with aqueous electrolytes has not been thoroughly understood. Herein, we report on a reversible hydration process to account for the electrochemical activity and structural evolution of TiS2 in a relatively dilute electrolyte for sustainable aqueous Li-ion batteries. Solvated water molecules intercalate in TiS2 layers together with Li+ cations, forming a hydrated phase with a nominal formula unit of Li0.38(H2O)2−δTiS2 as the end-product. We unambiguously confirm the presence of two layers of intercalated water by complementary electrochemical cycling, operando structural characterization, and computational simulation. Such a process is fast and reversible, delivering 60 mAh g–1 discharge capacity at a current density of 1250 mA g–1. Our work provides further design principles for high-rate aqueous Li-ion batteries based on reversible water cointercalation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22
Typ av publikation
tidskriftsartikel (22)
Typ av innehåll
refereegranskat (22)
Författare/redaktör
Brant, William R. (14)
Brandell, Daniel, 19 ... (4)
Lacey, Matthew J. (4)
Younesi, Reza (3)
Hahlin, Maria (3)
B. Brant Carvalho, P ... (3)
visa fler...
Chien, Yu-Chuan, 199 ... (3)
Mogensen, Ronnie (3)
Mikheenkova, Anastas ... (3)
Jiang, Y. (2)
Wang, X. (2)
Hicks, B. (2)
Fontanillas, P (2)
Ericsson, Tore (2)
Shi, J. (2)
Franke, A (2)
Edström, Kristina, P ... (2)
Aslibekyan, S (2)
Hveem, K (2)
Häggström, Lennart (2)
Esko, T (2)
Leitao, Alexandre A. (2)
Moraes, Pedro Ivo R. (2)
Agee, M (2)
Bryc, K (2)
Kleinman, A (2)
Shringarpure, S (2)
Tian, C (2)
Nandakumar, P. (2)
Naylor, Andrew J. (2)
Ek, Gustav (2)
Menon, Ashok S. (2)
Liu, Haidong, Dr. (2)
O'Connell, J (2)
Bell, R. K. (2)
Elson, S. L. (2)
Fletez-Brant, K. (2)
Gandhi, P. M. (2)
Hinds, D. A. (2)
Huber, K. E. (2)
Jewett, E. M. (2)
Lin, K. H. (2)
Luff, M. K. (2)
McCreight, J. C. (2)
McIntyre, M. H. (2)
McManus, K. F. (2)
Mountain, J. L. (2)
Mozaffari, S. V. (2)
Noblin, E. S. (2)
Petrakovitz, A. A. (2)
visa färre...
Lärosäte
Uppsala universitet (16)
Lunds universitet (6)
Stockholms universitet (4)
Karolinska Institutet (3)
Göteborgs universitet (2)
Chalmers tekniska högskola (2)
visa fler...
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Jönköping University (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (17)
Teknik (5)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy