SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Broberg Malin 1989) srt2:(2018)"

Sökning: WFRF:(Broberg Malin 1989) > (2018)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mills, Gina, 1959, et al. (författare)
  • Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:10, s. 4869-4893
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing both crop productivity and the tolerance of crops to abiotic and biotic stresses is a major challenge for global food security in our rapidly changing climate. For the first time, we show how the spatial variation and severity of tropospheric ozone effects on yield compare with effects of other stresses on a global scale, and discuss mitigating actions against the negative effects of ozone. We show that the sensitivity to ozone declines in the order soybean>wheat>maize>rice, with genotypic variation in response being most pronounced for soybean and rice. Based on stomatal uptake, we estimate that ozone (mean of 2010–2012) reduces global yield annually by 12.4%, 7.1%, 4.4% and 6.1% for soybean, wheat, rice and maize, respectively (the “ozone yield gaps”), adding up to 227Tg of lost yield. Our modelling shows that the highest ozone-induced production losses for soybean are in North and South America whilst for wheat they are in India and China, for rice in parts of India, Bangladesh, China and Indonesia, and for maize in China and the United States. Crucially, we also show that the same areas are often also at risk of high losses from pests and diseases, heat stress and to a lesser extent aridity and nutrient stress. In a solution-focussed analysis of these results, we provide a crop ideotype with tolerance of multiple stresses (including ozone) and describe how ozone effects could be included in crop breeding programmes. We also discuss altered crop management approaches that could be applied to reduce ozone impacts in the shorter term. Given the severity of ozone effects on staple food crops in areas of the world that are also challenged by other stresses, we recommend increased attention to the benefits that could be gained from addressing the ozone yield gap.
  •  
2.
  • Mills, Gina, 1959, et al. (författare)
  • Ozone pollution will compromise efforts to increase global wheat production
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:8, s. 3560-3574
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction of high-performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global assessments of how to increase crop yield have failed to consider the negative effects of tropospheric ozone, a gaseous pollutant that enters the leaf stomatal pores of plants along with carbon dioxide, and is increasing in concentration globally, particularly in rapidly developing countries. Earlier studies have simply estimated that the largest effects are in the areas with the highest ozone concentrations. Using a modelling method that accounts for the effects of soil moisture deficit and meteorological factors on the stomatal uptake of ozone, we show for the first time that ozone impacts on wheat yield are particularly large in humid rain-fed and irrigated areas of major wheat-producing countries (e.g. United States, France, India, China and Russia). Averaged over 2010-2012, we estimate that ozone reduces wheat yields by a mean 9.9% in the northern hemisphere and 6.2% in the southern hemisphere, corresponding to some 85 Tg (million tonnes) of lost grain. Total production losses in developing countries receiving Official Development Assistance are 50% higher than those in developed countries, potentially reducing the possibility of achieving UN SDG2. Crucially, our analysis shows that ozone could reduce the potential yield benefits of increasing irrigation usage in response to climate change because added irrigation increases the uptake and subsequent negative effects of the pollutant. We show that mitigation of air pollution in a changing climate could play a vital role in achieving the above-mentioned UN SDG, while also contributing to other SDGs related to human health and well-being, ecosystems and climate change.
  •  
3.
  • Pleijel, Håkan, 1958, et al. (författare)
  • Current surface ozone concentrations significantly decrease wheat growth, yield and quality
  • 2018
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 613, s. 687-692
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropospheric ozone is known to adversely affect crops and other vegetation. Most studies have focussed on the effects of elevated ozone levels vs. present ambient. We investigated the effect of present ambient surface ozone (O-3) concentrations vs. preindustrial on a range of agronomically important response variables in field-grown wheat, using results from 33 experiments (representing 9 countries, 3 continents, 17 cultivars plus one set of 4 cultivars) having both charcoal filtered (CF) and non-filtered (NF) air treatments. Average filtration efficiency was 62%, reducing the O-3 concentration from 35.6 +/- 10.6 SD ppb in NF to 13.7 +/- 8.8 SD ppb in CF. Average CF concentrations were in the range of levels believed to represent pre-industrial conditions, while NF concentrations were 7% lower than in the ambient air at plant height on the experimental sites. NF had significant (p < 0.05) negative effects compared to CF on grain yield (-8.4%), grain mass (-3.7%), harvest index (-2.4%), total above-ground biomass (-5.4%), starch concentration (-3.0%), starch yield (-10.9%), and protein yield (-6.2%). No significant effect was found for grain number and protein concentration. There was a significant relationship between the effect of filtration on grain yield and the difference in O-3 concentration between NF and CF treatments. The average yield loss per ppb O-3 removed was 0.38% and did not systematically vary with year of experiment (ranging from 1982 to 2010) or with the average O-3 level in the experiments. Although there are many differences among the field experiments included in this meta-analysis (e.g. genotype, degree of O-3 pollution of the site and year, nutrient and soil condition, filtration efficiency), our study clearly shows that there is a consistent and significant effect of present ambient O-3 exposure on a range of important response variables in wheat, the most strongly affected being starch yield. (C) 2017 Elsevier B.V. All rights reserved.
  •  
4.
  • Uddling, Johan, 1972, et al. (författare)
  • Crop quality under rising atmospheric CO2
  • 2018
  • Ingår i: Current Opinion in Plant Biology. - : Elsevier BV. - 1369-5266. ; 45, s. 262-267
  • Forskningsöversikt (refereegranskat)abstract
    • © 2018 Elsevier Ltd Crops grown under elevated CO2 (eCO2) typically exhibit enhanced yields but at the same time decreased nutritional quality. The latter effect has often been explained as a growth dilution phenomenon, but this cannot be the only process involved since crop nutrient concentrations are decreased also when production is unaffected by eCO2. We review the current knowledge on eCO2 effects on crop nutritional quality with focus on the current understanding of the possible mechanisms and processes causing these effects. Emphasis is on crop nitrogen (N) and protein concentrations but effects on other nutrients and how they compare with those on N are also covered.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy