SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bruel T) srt2:(2015-2019)"

Sökning: WFRF:(Bruel T) > (2015-2019)

  • Resultat 1-46 av 46
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abeysekara, A. U., et al. (författare)
  • VERITAS and Fermi-LAT Observations of TeV Gamma-Ray Sources Discovered by HAWC in the 2HWC Catalog
  • 2018
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing. - 0004-637X .- 1538-4357. ; 866:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The High Altitude Water Cherenkov (HAWC) collaboration recently published their 2HWC catalog, listing 39 very high energy (VHE; >100 GeV) gamma-ray sources based on 507 days of observation. Among these, 19 sources are not associated with previously known teraelectronvolt (TeV) gamma-ray sources. We have studied 14 of these sources without known counterparts with VERITAS and Fermi-LAT. VERITAS detected weak gamma-ray emission in the 1 TeV-30 TeV band in the region of DA 495, a pulsar wind nebula coinciding with 2HWC J1953+294, confirming the discovery of the source by HAWC. We did not find any counterpart for the selected 14 new HAWC sources from our analysis of Fermi-LAT data for energies higher than 10 GeV. During the search, we detected gigaelectronvolt (GeV) gamma-ray emission coincident with a known TeV pulsar wind nebula, SNR G54.1+0.3 (VER J1930+188), and a 2HWC source, 2HWC J1930+188. The fluxes for isolated, steady sources in the 2HWC catalog are generally in good agreement with those measured by imaging atmospheric Cherenkov telescopes. However, the VERITAS fluxes for SNR G54.1+0.3, DA 495, and TeV J2032+4130 are lower than those measured by HAWC, and several new HAWC sources are not detected by VERITAS. This is likely due to a change in spectral shape, source extension, or the influence of diffuse emission in the source region.
  •  
3.
  • Abdalla, H., et al. (författare)
  • Gamma-ray blazar spectra with HESS II mono analysis : The case of PKS2155-304 and PG1553+113
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment's sensitivity to lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument's energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift >= 0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553 + 113 (0.43 < z < 0.58) are among the brightest objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims. The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155-304 and PG 1553 + 113 near their SED peaks at energies approximate to 100 GeV. Methods. Multiple observational campaigns of PKS 2155 304 and PG 1553 + 113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1-5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results. Using the data from CT5, the energy spectra of PKS 2155 304 and PG 1553 + 113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155 304, which transits near zenith, and 110 GeV for the more northern PG 1553 + 113. The measured spectra, well fitted in both cases by a log-parabola spectral model ( with a 5.0 similar to statistical preference for non-zero curvature for PKS 2155 304 and 4.5 sigma for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E approximate to 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155 304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.
  •  
4.
  • Acero, F., et al. (författare)
  • FERMI LARGE AREA TELESCOPE THIRD SOURCE CATALOG
  • 2015
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 218:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the third Fermi Large Area Telescope (LAT) source catalog (3FGL) of sources in the 100 MeV-300 GeV range. Based on the first 4 yr of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the Second Fermi LAT catalog, the 3FGL catalog incorporates twice as much data, as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse.-ray emission, a refined procedure for source detection, and improved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources above 4 sigma significance, with source location regions, spectral properties, and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 238 sources are considered as identified based on angular extent or correlated variability (periodic or otherwise) observed at other wavelengths. For 1010 sources we have not found plausible counterparts at other wavelengths. More than 1100 of the identified or associated sources are active galaxies of the blazar class; several other classes of non-blazar active galaxies are also represented in the 3FGL. Pulsars represent the largest Galactic source class. From source counts of Galactic sources we estimate that the contribution of unresolved sources to the Galactic diffuse emission is similar to 3% at 1 GeV.
  •  
5.
  • Ackermann, M., et al. (författare)
  • FERMI-LAT OBSERVATIONS OF THE LIGO EVENT GW150914
  • 2016
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 823:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi Large Area Telescope (LAT) has an instantaneous field of view (FoV) covering similar to 1/5 of the sky and it completes a survey of the entire sky in high-energy gamma-rays every 3 hr. It enables searches for transient phenomena over timescales from milliseconds to years. Among these phenomena could be electromagnetic counterparts to gravitational wave (GW) sources. In this paper, we present a detailed study of the LAT observations relevant to Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914, which is the first direct detection of gravitational waves and has been interpreted as being due to the coalescence of two stellar-mass black holes. The localization region for GW150914 was outside the LAT FoV at the time of the GW signal. However, as part of routine survey observations, the LAT observed the entire LIGO localization region within similar to 70 minutes of the trigger and thus enabled a comprehensive search for a.-ray counterpart to GW150914. The study of the LAT data presented here did not find any potential counterparts to GW150914, but it did provide limits on the presence of a transient counterpart above 100 MeV on timescales of hours to days over the entire GW150914 localization region.
  •  
6.
  • Acero, F., et al. (författare)
  • THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG
  • 2016
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 224:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.
  •  
7.
  • Ackermann, M., et al. (författare)
  • 2FHL : THE SECOND CATALOG OF HARD FERMI-LAT SOURCES
  • 2016
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 222:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass. 8 event-level analysis allows the detection and characterization of sources in the 50 GeV-2 TeV energy range. In this energy band, Fermi-LAT. has detected 360 sources, which constitute the second catalog of hard Fermi-LAT. sources (2FHL). The improved angular resolution enables the precise localization of point sources (similar to 1.' 7 radius at 68% C.L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associated with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHL sources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi-LAT. on orbit and the observations performed at higher energies by Cherenkov telescopes from the ground.
  •  
8.
  • Goldstein, A., et al. (författare)
  • Fermi Observations of the LIGO Event GW170104
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : IOP PUBLISHING LTD. - 2041-8205 .- 2041-8213. ; 846:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger (BBH) event GW170104. No candidate electromagnetic counterpart was detected by either GBM or LAT. A detailed analysis of the GBM and LAT data over timescales from seconds to days covering the Laser Interferometer Gravitational-wave Observatory (LIGO) localization region is presented. The resulting flux upper bound from the GBM is (5.2-9.4). x. 10(-7) erg cm(-2) s(-1) in the 10-1000 keV range and from the LAT is (0.2-90). x. 10(-9) erg cm(-2) s(-1) in the 0.1-1 GeV range. We also describe the improvements to our automated pipelines and analysis techniques for searching for and characterizing the potential electromagnetic counterparts for future gravitational-wave events from Advanced LIGO/Virgo.
  •  
9.
  • Ackermann, M., et al. (författare)
  • MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113
  • 2015
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 813:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report for the first time a gamma-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope we have discovered an apparent quasi-periodicity in the gamma-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 +/- 0.08 year period gamma-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. The optical cycle appearing in similar to 10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.
  •  
10.
  • Ackermann, M., et al. (författare)
  • Search for extended gamma-ray emission from the Virgo Galaxy Cluster with Fermi-LAT
  • 2015
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 812:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of gamma-ray telescopes. Here we use three years of Fermi-Large Area Telescope data, which are the most suitable for searching for very extended emission in the vicinity of the nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3 degrees that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on the velocity-averaged DM pair annihilation cross section from Virgo. We take into account the potential gamma-ray flux enhancement due to DM sub-halos and its complex morphology as a merging cluster. For DM annihilating into b (b) over bar, assuming a conservative sub-halo model setup, we find limits that are between 1 and 1.5 orders of magnitude above the expectation from the thermal cross section for m(DM) <= 100 GeV. In a more optimistic scenario, we exclude similar to 3 x 10(-26)cm(3)s(-1) for m(DM)less than or similar to 40 GeV for the same channel. Finally, we derive upper limits on the gamma-ray-flux produced by hadronic cosmic-ray interactions in the inter cluster medium. We find that the volume-averaged cosmic-ray-to-thermal pressure ratio is less than similar to 6%.
  •  
11.
  • Ackermann, M., et al. (författare)
  • The Fermi Galactic Center GeV Excess and Implications for Dark Matter
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing. - 0004-637X .- 1538-4357. ; 840:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertainties in the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.
  •  
12.
  • Ackermann, M., et al. (författare)
  • The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 799:1, s. 86-
  • Tidskriftsartikel (refereegranskat)abstract
    • The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 +/- 0.02 and a break energy of (279 +/- 52) GeV using our baseline DGE model. The total intensity attributed to the IGRB is (7.2 +/- 0.6) x 10(-6) cm(-2) s(-1) sr(-1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.
  •  
13.
  • Ackermann, M., et al. (författare)
  • THE THIRD CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 810:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected between 100 MeV and 300 GeV with a Test Statistic greater than 25, between 2008 August 4 and 2012 July 31. The 3LAC includes 1591 AGNs located at high Galactic latitudes (vertical bar b vertical bar > 10 degrees), a 71% increase over the second catalog based on 2 years of data. There are 28 duplicate associations, thus 1563 of the 2192 high-latitude gamma-ray sources of the 3FGL catalog are AGNs. Most of them (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. Based on their gamma-ray spectral properties, these sources are evenly split between flat-spectrum radio quasars (FSRQs) and BL Lacs. The most abundant detected BL Lacs are of the high-synchrotron-peaked (HSP) type. About 50% of the BL Lacs have no measured redshifts. A few new rare outliers (HSP-FSRQs and high-luminosity HSP BL Lacs) are reported. The general properties of the 3LAC sample confirm previous findings from earlier catalogs. The fraction of 3LAC blazars in the total population of blazars listed in BZCAT remains non-negligible even at the faint ends of the BZCAT-blazar radio, optical, and X-ray flux distributions, which hints that even the faintest known blazars could eventually shine in gamma-rays at LAT-detection levels. The energy-flux distributions of the different blazar populations are in good agreement with extrapolation from earlier catalogs.
  •  
14.
  • Ajello, M., et al. (författare)
  • FERMI-LAT OBSERVATIONS OF HIGH-ENERGY gamma-RAY EMISSION TOWARD THE GALACTIC CENTER
  • 2016
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 819:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission toward the Galactic center (GC) in high-energy gamma-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1-100 GeV from a 15 degrees x 15 degrees region about the direction of the GC. Specialized interstellar emission models (IEMs) are constructed to enable the separation of the.-ray emissions produced by cosmic ray particles interacting with the interstellar gas and radiation fields in the Milky Way into that from the inner similar to 1 kpc surrounding the GC, and that from the rest of the Galaxy. A catalog of point sources for the 15 degrees x 15 degrees region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy Point Source Catalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with gamma-ray point sources over the same region taken from existing catalogs. After subtracting the interstellar emission and point-source contributions a residual is found. If templates that peak toward the GC are used to model the positive residual the agreement with the data improves, but none of the additional templates tried account for all of its spatial structure. The spectrum of the positive residual modeled with these templates has a strong dependence on the choice of IEM.
  •  
15.
  • Ajello, M., et al. (författare)
  • Fermi-LAT Observations of LIGO/Virgo Event GW170817
  • 2018
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 861:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the Fermi Large Area Telescope (LAT) observations of the binary neutron star merger event GW170817 and the associated short gamma-ray burst (SGRB) GRB 170817A detected by the Fermi Gamma-ray Burst Monitor. The LAT was entering the South Atlantic Anomaly at the time of the LIGO/Virgo trigger (t(GW)) and therefore cannot place constraints on the existence of high-energy (E > 100 MeV) emission associated with the moment of binary coalescence. We focus instead on constraining high-energy emission on longer timescales. No candidate electromagnetic counterpart was detected by the LAT on timescales of minutes, hours, or days after the LIGO/Virgo detection. The resulting flux upper bound (at 95% C. L.) from the LAT is 4.5. x. 10(-10) erg cm(-2) s(-1) in the 0.1-1 GeV range covering a period from tGW. +. 1153 s to t(GW). +. 2027 s. At the distance of GRB 170817A, this flux upper bound corresponds to a luminosity upper bound of 9.7. x. 10(43) erg s(-1), which is five orders of magnitude less luminous than the only other LAT SGRB with known redshift, GRB 090510. We also discuss the prospects for LAT detection of electromagnetic counterparts to future gravitational-wave events from Advanced LIGO/Virgo in the context of GW170817/GRB 170817A.
  •  
16.
  • Acero, F., et al. (författare)
  • DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA
  • 2016
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 223:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the celestial. rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop. I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20 degrees and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within similar to 4 degrees of the Galactic Center.
  •  
17.
  • Ackermann, M., et al. (författare)
  • Observations of M31 and M33 with the Fermi Large Area Telescope : A Galactic Center Excess in Andromeda?
  • 2017
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 836:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi Large Area Telescope (LAT) has opened the way for comparative studies of cosmic rays (CRs) and high-energy objects in the Milky Way (MW) and in other, external, star-forming galaxies. Using 2 yr of observations with the Fermi LAT, Local Group galaxy M31 was detected as a marginally extended gamma-ray source, while only an upper limit has been derived for the other nearby galaxy M33. We revisited the gamma-ray emission in the direction of M31 and M33 using more than 7 yr of LAT Pass 8 data in the energy range 0.1-100 GeV, presenting detailed morphological and spectral analyses. M33 remains undetected, and we computed an upper limit of 2.0 x 10(-12) erg cm(-2) s(-1) on the 0.1-100 GeV energy flux (95% confidence level). This revised upper limit remains consistent with the observed correlation between gamma-ray luminosity and star formation rate tracers and implies an average CR density in M33 that is at most half of that of the MW. M31 is detected with a significance of nearly 10 sigma. Its spectrum is consistent with a power law with photon index Gamma = 2.4 +/- 0.1(stat) (vertical bar) (syst) and a 0.1-100 GeV energy flux of (5.6 +/- 0.6(stat vertical bar syst)) x 10(-12) erg cm(-1) s(-1). M31 is detected to be extended with a 4 sigma significance. The spatial distribution of the emission is consistent with a uniform-brightness disk with a radius of 0 degrees.4 and no offset from the center of the galaxy, but nonuniform intensity distributions cannot be excluded. The flux from M31 appears confined to the inner regions of the galaxy and does not fill the disk of the galaxy or extend far from it. The gamma-ray signal is not correlated with regions rich in gas or star formation activity, which suggests that the emission is not interstellar in origin, unless the energetic particles radiating in gamma rays do not originate in recent star formation. Alternative and nonexclusive interpretations are that the emission results from a population of millisecond pulsars dispersed in the bulge and disk of M31 by disrupted globular clusters or from the decay or annihilation of dark matter particles, similar to what has been proposed to account for the so-called Galactic center excess found in Fermi-LAT observations of the MW.
  •  
18.
  • Ackermann, M., et al. (författare)
  • Search for Extended Sources in the Galactic Plane Using Six Years of Fermi-Large Area Telescope Pass 8 Data above 10GeV
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 843:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The spatial extension of gamma-ray source is an essential ingredient to determine its spectral properties, as well as its potential multiwavelength counterpart. The capability to spatially resolve gamma-ray sources is greatly improved by the newly delivered Fermi-Large Area Telescope (LAT) Pass 8 event-level analysis, which provides a greater acceptance and an improved point-spread function, two crucial factors for the detection of extended sources. Here, we present a complete search for extended sources located within 7 degrees from the Galactic plane, using 6 yr of Fermi-LAT data above 10 GeV. We find 46 extended sources and provide their morphological and spectral characteristics. This constitutes the first catalog of hard Fermi-LAT extended sources, named the Fermi Galactic Extended Source Catalog, which allows a thorough study of the properties of the Galactic plane in the sub-TeV domain.
  •  
19.
  • Ackermann, M., et al. (författare)
  • Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data
  • 2015
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 115:23
  • Tidskriftsartikel (refereegranskat)abstract
    • The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on gamma-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new PASS8 event-level analysis. None of the dSphs are significantly detected in gamma rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass less than or similar to 100 GeV annihilating via quark and tau-lepton channels.
  •  
20.
  • Clark, C. J., et al. (författare)
  • Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar
  • 2018
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date,radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs,we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs,one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations,raising hopes for detecting MSPs from a predicted Galactic bulge population. 
  •  
21.
  • Racusin, J. L., et al. (författare)
  • SEARCHING THE GAMMA-RAY SKY FOR COUNTERPARTS TO GRAVITATIONAL WAVE SOURCES : FERMI GAMMA-RAY BURST MONITOR. AND LARGE AREA TELESCOPE OBSERVATIONS OF LVT151012 AND GW151226
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 835:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper bounds across large areas of the sky. Due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914.
  •  
22.
  • Abdollahi, S., et al. (författare)
  • Search for Cosmic-Ray Electron and Positron Anisotropies with Seven Years of Fermi Large Area Telescope Data
  • 2017
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 118:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Area Telescope on board the Fermi Gamma-ray Space Telescope has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction. The present data sample can probe dipole anisotropies down to a level of 10(-3). We take into account systematic effects that could mimic true anisotropies at this level. We present a detailed study of the event selection optimization of the cosmic-ray electrons and positrons to be used for anisotropy searches. Since no significant anisotropies have been detected on any angular scale, we present upper limits on the dipole anisotropy. The present constraints are among the strongest to date probing the presence of nearby young and middle-aged sources.
  •  
23.
  • Abdollahi, S., et al. (författare)
  • The Second Catalog of Flaring Gamma-Ray Sources from the Fermi All-sky Variability Analysis
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 846:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the second catalog of flaring gamma-ray sources (2FAV) detected with the Fermi All-sky Variability Analysis (FAVA), a tool that blindly searches for transients over the entire sky observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. With respect to the first FAVA catalog, this catalog benefits from a larger data set, the latest LAT data release (Pass 8), as well as from an improved analysis that includes likelihood techniques for a more precise localization of the transients. Applying this analysis to the first 7.4 years of Fermi observations, and in two separate energy bands 0.1-0.8 GeV and 0.8-300 GeV, a total of 4547 flares were detected with significance greater than 6s (before trials), on the timescale of one week. Through spatial clustering of these flares, 518 variable gamma-ray sources were identified. Based on positional coincidence, likely counterparts have been found for 441 sources, mostly among the blazar class of active galactic nuclei. For 77 2FAV sources, no likely gamma-ray counterpart has been found. For each source in the catalog, we provide the time, location, and spectrum of each flaring episode. Studying the spectra of the flares, we observe a harder-when-brighter behavior for flares associated with blazars, with the exception of BL Lac flares detected in the low-energy band. The photon indexes of the flares are never significantly smaller than 1.5. For a leptonic model, and under the assumption of isotropy, this limit suggests that the spectrum of freshly accelerated electrons is never harder than p similar to 2.
  •  
24.
  • Ackermann, M., et al. (författare)
  • FERMI LARGE AREA TELESCOPE DETECTION OF EXTENDED GAMMA-RAY EMISSION FROM THE RADIO GALAXY FORNAX A
  • 2016
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 826:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the Fermi Large Area Telescope detection of extended gamma-ray emission from the lobes of the radio galaxy Fornax. A using 6.1 years of Pass. 8 data. After Centaurus. A, this is now the second example of an extended gamma-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be < 14% of the total gamma-ray flux. A preferred alignment of the gamma-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on similar to 0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the gamma-rays. With the extended nature of the > 100 MeV gamma-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus. A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the gamma-ray fluxes by factors of about similar to 2-3, depending on the EBL model adopted. An additional gamma-ray spectral component is thus required, and could be due to hadronic emission arising from proton-proton collisions of cosmic rays with thermal plasma within the radio lobes.
  •  
25.
  • Ackermann, M., et al. (författare)
  • Resolving the Extragalactic gamma-Ray Background above 50 GeV with the Fermi Large Area Telescope
  • 2016
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 116:15
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi Large Area Telescope (LAT) Collaboration has recently released a catalog of 360 sources detected above 50 GeV (2FHL). This catalog was obtained using 80 months of data re-processed with Pass 8, the newest event-level analysis, which significantly improves the acceptance and angular resolution of the instrument. Most of the 2FHL sources at high Galactic latitude are blazars. Using detailed Monte Carlo simulations, we measure, for the first time, the source count distribution, dN= dS, of extragalactic.-ray sources at E > 50 GeV and find that it is compatible with a Euclidean distribution down to the lowest measured source flux in the 2FHL (8 x 10(-12) ph cm(-2) s(-1)). We employ a one-point photon fluctuation analysis to constrain the behavior of dN= dS below the source detection threshold. Overall, the source count distribution is constrained over three decades in flux and found compatible with a broken power law with a break flux, Sb, in the range [8 x 10-12; 1.5 x 10-11] ph cm(-2) s(-1) and power-law indices below and above the break of a 2. [1.60; 1.75] and a 1 +/- 2.49 +/- 0.12, respectively. Integration of dN= dS shows that point sources account for at least 86_16 -14 % of the total extragalactic gamma-ray background. The simple form of the derived source count distribution is consistent with a single population (i. e., blazars) dominating the source counts to the minimum flux explored by this analysis. We estimate the density of sources detectable in blind surveys that will be performed in the coming years by the Cherenkov Telescope Array.
  •  
26.
  • Ackermann, M., et al. (författare)
  • SEARCH FOR EARLY GAMMA-RAY PRODUCTION IN SUPERNOVAE LOCATED IN A DENSE CIRCUMSTELLAR MEDIUM WITH THE FERMI LAT
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 807:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV gamma-rays and TeV neutrinos on a timescale of several months. We perform the first systematic search for gamma-ray emission in Fermi Large Area Telescope data in the energy range from 100 MeV to 300 GeV from the ensemble of 147 SNe Type IIn exploding in a dense CSM. We search for a gamma-ray excess at each SNe location in a one-year time window. In order to enhance a possible weak signal, we simultaneously study the closest and optically brightest sources of our sample in a joint-likelihood analysis in three different time windows (1 year, 6 months, and 3 months). For the most promising source of the sample, SN 2010jl (PTF 10aaxf), we repeat the analysis with an extended time window lasting 4.5 years. We do not find a significant excess in gamma-rays for any individual source nor for the combined sources and provide model-independent flux upper limits for both cases. In addition, we derive limits on the gamma-ray luminosity and the ratio of gamma-ray-to-optical luminosity ratio as a function of the index of the proton injection spectrum assuming a generic gamma-ray production model. Furthermore, we present detailed flux predictions based on multi-wavelength observations and the corresponding flux upper limit at a 95% confidence level (CL) for the source SN 2010jl (PTF 10aaxf).
  •  
27.
  • Ackermann, M., et al. (författare)
  • The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope
  • 2018
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 237:2, s. 32-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a search for spatial extension in high-latitude (vertical bar b vertical bar > 5 degrees) sources in recent Fermi point source catalogs. The result is the Fermi High-Latitude Extended Sources Catalog, which provides source extensions (or upper limits thereof) and likelihood profiles for a suite of tested source morphologies. We find 24. extended sources, 19 of which were not previously characterized as extended. These include sources that are potentially associated with supernova remnants and star-forming regions. We also found extended.-ray emission in the vicinity of the Cen. A radio lobes and-at GeV energies for the first time-spatially coincident with the radio emission of the SNR CTA 1, as well as from the Crab Nebula. We also searched for halos around active galactic nuclei, which are predicted from electromagnetic cascades induced by the e(+)e(-) pairs that are deflected in intergalactic magnetic fields. These pairs are produced when gamma-rays interact with background radiation fields. We do not find evidence for extension in individual sources or in stacked source samples. This enables us to place limits on the flux of the extended source components, which are then used to constrain the intergalactic magnetic field to be stronger than 3 x 10(-16) G for a coherence length lambda greater than or similar to 10 kpc, even when conservative assumptions on the source duty cycle are made. This improves previous limits by several orders of magnitude.
  •  
28.
  • Ajello, M., et al. (författare)
  • 3FHL : The Third Catalog of Hard Fermi-LAT Sources
  • 2017
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 232:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a catalog of sources detected above 10 GeV by the Fermi Large Area Telescope (LAT) in the first 7 years of data using the Pass 8 event-level analysis. This is the Third Catalog of Hard Fermi-LAT Sources (3FHL), containing 1556 objects characterized in the 10 GeV-2 TeV energy range. The sensitivity and angular resolution are improved by factors of 3 and 2 relative to the previous LAT catalog at the same energies (1FHL). The vast majority of detected sources (79%) are associated with extragalactic counterparts at other wavelengths, including 16 sources located at very high redshift (z > 2). Of the sources, 8% have Galactic counterparts and 13% are unassociated (or associated with a source of unknown nature). The high-latitude sky and the Galactic plane are observed with a flux sensitivity of 4.4 to 9.5 x 10(-11) ph cm(-2) s(-1), respectively (this is approximately 0.5% and 1% of the Crab Nebula flux above 10 GeV). The catalog includes 214 new gamma-ray sources. The substantial increase in the number of photons (more than 4 times relative to 1FHL and 10 times to 2FHL) also allows us to measure significant spectral curvature for 32 sources and find flux variability for 163 of them. Furthermore, we estimate that for the same flux limit of 10(-12) erg cm(-2) s(-1), the energy range above 10 GeV has twice as many sources as the range above 50 GeV, highlighting the importance, for future Cherenkov telescopes, of lowering the energy threshold as much as possible.
  •  
29.
  • Ackermann, M., et al. (författare)
  • Deep view of the Large Magellanic Cloud with six years of Fermi-LAT observations
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 586
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The nearby Large Magellanic Cloud (LMC) provides a rare opportunity of a spatially resolved view of an external star-forming galaxy in gamma-rays. The LMC was detected at 0.1-100 GeV as an extended source with CGRO/EGRET and using early observations with the Fermi-LAT. The emission was found to correlate with massive star-forming regions and to be particularly bright towards 30 Doradus. Aims. Studies of the origin and transport of cosmic rays (CRs) in the Milky Way are frequently hampered by line-of-sight confusion and poor distance determination. The LMC offers a complementary way to address these questions by revealing whether and how the gamma-ray emission is connected to specific objects, populations of objects, and structures in the galaxy. Methods. We revisited the gamma-ray emission from the LMC using about 73 months of Fermi-LAT P7REP data in the 0.2-100 GeV range. We developed a complete spatial and spectral model of the LMC emission, for which we tested several approaches: a simple geometrical description, template-fitting, and a physically driven model for CR-induced interstellar emission. Results. In addition to identifying PSR J0540-6919 through its pulsations, we find two hard sources positionally coincident with plerion N 157B and supernova remnant N 132D, which were also detected at TeV energies with H.E.S.S. We detect an additional soft source that is currently unidentified. Extended emission dominates the total flux from the LMC. It consists of an extended component of about the size of the galaxy and additional emission from three to four regions with degree-scale sizes. If it is interpreted as CRs interacting with interstellar gas, the large-scale emission implies a large-scale population of similar to 1-100 GeV CRs with a density of similar to 30% of the local Galactic value. On top of that, the three to four small-scale emission regions would correspond to enhancements of the CR density by factors 2 to 6 or higher, possibly more energetic and younger populations of CRs compared to the large-scale population. An alternative explanation is that this is emission from an unresolved population of at least two dozen objects, such as pulsars and their nebulae or supernova remnants. This small-scale extended emission has a spatial distribution that does not clearly correlate with known components of the LMC, except for a possible relation to cavities and supergiant shells. Conclusions. The Fermi-LAT GeV observations allowed us to detect individual sources in the LMC. Three of the newly discovered sources are associated with rare and extreme objects. The 30 Doradus region is prominent in GeV gamma-rays because PSR J0540-6919 and N 157B are strong emitters. The extended emission from the galaxy has an unexpected spatial distribution, and observations at higher energies and in radio may help to clarify its origin.
  •  
30.
  • Ackermann, M., et al. (författare)
  • FERMI LAT STACKING ANALYSIS OF SWIFT LOCALIZED GRBs
  • 2016
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 822:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform a comprehensive stacking analysis of data collected by the Fermi. Large Area Telescope (LAT) of gamma-ray bursts (GRBs) localized by the Swift. spacecraft, which were not detected by the LAT but which fell within the instrument's field of view at the time of trigger. We examine a total of 79 GRBs by comparing the observed counts over a range of time intervals to that expected from designated background orbits, as well as by using a joint likelihood technique to model the expected distribution of stacked counts. We find strong evidence for subthreshold emission at MeV to GeV energies using both techniques. This observed excess is detected during intervals that include and exceed the durations typically characterizing the prompt emission observed at keV energies and lasts at least 2700 s after the co-aligned burst trigger. By utilizing a novel cumulative likelihood analysis, we find that although a burst's prompt gamma-ray and afterglow X-ray flux both correlate with the strength of the subthreshold emission, the X-ray afterglow flux measured by Swift's X-ray Telescope at 11 hr post trigger correlates far more significantly. Overall, the extended nature of the subthreshold emission and its connection to the burst's afterglow brightness lend. further support to the external forward shock origin of the late-time emission detected by the LAT. These results suggest that the extended high-energy emission observed by the LAT may be a relatively common feature but remains undetected in a majority of bursts owing. to instrumental threshold effects.
  •  
31.
  • Ackermann, M., et al. (författare)
  • Gamma-Ray Blazars within the First 2 Billion Years
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 837:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of high-redshift (z > 3) blazars enables the study of the evolution of the most luminous relativistic jets over cosmic time. More importantly, high-redshift blazars tend to host massive black holes and can be used to constrain the space density of heavy black holes in the early universe. Here, we report the first detection with the Fermi-Large Area Telescope of five γ-ray-emitting blazars beyond z = 3.1, more distant than any blazars previously detected in γ-rays. Among these five objects, NVSS J151002+570243 is now the most distant known γ-ray-emitting blazar at z = 4.31. These objects have steeply falling γ-ray spectral energy distributions (SEDs), and those that have been observed in X-rays have a very hard X-ray spectrum, both typical of powerful blazars. Their Compton dominance (ratio of the inverse Compton to synchrotron peak luminosities) is also very large (>20). All of these properties place these objects among the most extreme members of the blazar population. Their optical spectra and the modeling of their optical-UV SEDs confirm that these objects harbor massive black holes (MBH ∼ 10 8-10 Mo ). We find that, at z ≈ 4, the space density of >109 Mo black holes hosted in radio-loud and radio-quiet active galactic nuclei are similar, implying that radio-loudness may play a key role in rapid black hole growth in the early universe.
  •  
32.
  • Ackermann, M., et al. (författare)
  • Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope
  • 2016
  • Ingår i: PHYSICAL REVIEW D. - 2470-0010. ; 93:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first seven years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.
  •  
33.
  • Ackermann, M., et al. (författare)
  • Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope
  • 2015
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 91:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Dark matter in the Milky Way may annihilate directly into. rays, producing a monoenergetic spectral line. Therefore, detecting such a signature would be strong evidence for dark matter annihilation or decay. We search for spectral lines in the Fermi Large Area Telescope observations of the Milky Way halo in the energy range 200 MeV-500 GeV using analysis methods from our most recent line searches. The main improvements relative to previous works are our use of 5.8 years of data reprocessed with the Pass 8 event-level analysis and the additional data resulting from the modified observing strategy designed to increase exposure of the Galactic center region. We search in five sky regions selected to optimize sensitivity to different theoretically motivated dark matter scenarios and find no significant detections. In addition to presenting the results from our search for lines, we also investigate the previously reported tentative detection of a line at 133 GeV using the new Pass 8 data.
  •  
34.
  • Ackermann, M., et al. (författare)
  • Fermi-LAT Observations of High-energy Behind-the-limb Solar Flares
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 835:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the Fermi-LAT detection of high-energy emission from the behind-the-limb (BTL) solar flares that occurred on 2013 October 11, and 2014 January 6 and September 1. The Fermi-LAT observations are associated with flares from active regions originating behind both the eastern and western limbs, as determined by STEREO. All three flares are associated with very fast coronal mass ejections (CMEs) and strong solar energetic particle events. We present updated localizations of the >100 MeV photon emission, hard X-ray (HXR) and EUV images, and broadband spectra from 10 keV to 10 GeV, as well as microwave spectra. We also provide a comparison of the BTL flares detected by Fermi-LAT with three on-disk flares and present a study of some of the significant quantities of these flares as an attempt to better understand the acceleration mechanisms at work during these occulted flares. We interpret the HXR emission to be due to electron bremsstrahlung from a coronal thin-target loop top with the accelerated electron spectra steepening at semirelativistic energies. The >100 MeV gamma-rays are best described by a pion-decay model resulting from the interaction of protons (and other ions) in a thick-target photospheric source. The protons are believed to have been accelerated (to energies >10 GeV) in the CME environment and precipitate down to the photosphere from the downstream side of the CME shock and landed on the front side of the Sun, away from the original flare site and the HXR emission.
  •  
35.
  • Ackermann, M., et al. (författare)
  • Limits on dark matter annihilation signals from the Fermi LAT 4-year measurement of the isotropic gamma-ray background
  • 2015
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :9
  • Tidskriftsartikel (refereegranskat)abstract
    • We search for evidence of dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) measured with 50 months of Fermi Large Area Telescope (LAT) observations. An improved theoretical description of the cosmological DM annihilation signal, based on two complementary techniques and assuming generic weakly interacting massive particle (WIMP) properties, renders more precise predictions compared to previous work. More specifically, we estimate the cosmologically-induced gamma-ray intensity to have an uncertainty of a factor similar to 20 in canonical setups. We consistently include both the Galactic and extragalactic signals under the same theoretical framework, and study the impact of the former on the IGRB spectrum derivation. We find no evidence for a DM signal and we set limits on the DM-induced isotropic gamma-ray signal. Our limits are competitive for DM particle masses up to tens of TeV and, indeed, are the strongest limits derived from Fermi LAT data at TeV energies. This is possible thanks to the new Fermi LAT IGRB measurement, which now extends up to an energy of 820 GeV. We quantify uncertainties in detail and show the potential this type of search offers for testing the WIMP paradigm with a complementary and truly cosmological probe of DM particle signals.
  •  
36.
  • Ackermann, M., et al. (författare)
  • MINUTE-TIMESCALE > 100 MeV gamma-RAY VARIABILITY DURING THE GIANT OUTBURST OF QUASAR 3C 279 OBSERVED BY FERMI-LAT IN 2015 JUNE
  • 2016
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 824:2
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2015 June 16, Fermi- LAT observed a giant outburst from the flat spectrum radio quasar 3C 279 with a peak >100 MeV flux of similar to 3.6 x 10(-5) photons cm(-2) s(-1), averaged over orbital period intervals. It is historically the highest gamma-ray flux observed from the source, including past EGRET observations, with the gamma-ray isotropic luminosity reaching similar to 10(49) erg s(-1). During the outburst, the Fermi spacecraft, which has an orbital period of 95.4 minutes, was operated in a special pointing mode to optimize the exposure for 3C 279. For the first time, significant flux variability at sub-orbital timescales was found in blazar observations by Fermi- LAT. The source flux variability was resolved down to 2-minute binned timescales, with flux doubling times of less than 5 minutes. The observed minute-scale variability suggests a very compact emission region at hundreds of Schwarzschild radii from the central engine in conical jet models. A minimum bulk jet Lorentz factor (Gamma) of 35 is necessary to avoid both internal gamma-ray absorption and super-Eddington jet power. In the standard external radiation Comptonization scenario, G should be at least 50 to avoid overproducing the synchrotron self-Compton component. However, this predicts extremely low magnetization (similar to 5 x 10(-4)). Equipartition requires Gamma as high as 120, unless the emitting region is a small fraction of the dissipation region. Alternatively, we consider. rays originating as synchrotron radiation of gamma e similar to 1.6 x 10(6) electrons, in a magnetic field B similar to 1.3 kG, accelerated by strong electric fields E similar to B in the process of magnetoluminescence. At such short distance scales, one cannot immediately exclude the production of gamma-rays in hadronic processes.
  •  
37.
  • Ackermann, M., et al. (författare)
  • Search for gamma-ray emission from the Coma Cluster with six years of Fermi-LAT data
  • 2016
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 819:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from gamma-ray observations of the Coma cluster incorporating six years of Fermi-LAT data and the newly released "Pass 8" event-level analysis. Our analysis of the region reveals low-significance residual structures within the virial radius of the cluster that are too faint for a detailed investigation with the current data. Using a likelihood approach that is free of assumptions on the spectral shape we derive upper limits on the gamma-ray flux that is expected from energetic particle interactions in the cluster. We also consider a benchmark spatial and spectral template motivated by models in which the observed radio halo is mostly emission by secondary electrons. In this case, the median expected and observed upper limits for the flux above 100MeV are 1.7 x 10(-9) ph cm(-2) s(-1) and 5.2 x 10(-9) ph cm(-2) s(-1) respectively (the latter corresponds to residual emission at the level of 1.8 sigma). These bounds are comparable to or higher than predicted levels of hadronic gamma-ray emission in cosmic-ray (CR) models with or without reacceleration of secondary electrons, although direct comparisons are sensitive to assumptions regarding the origin and propagation mode of CRs and magnetic field properties. The minimal expected.-ray flux from radio and star-forming galaxies within the Coma cluster is roughly an order of magnitude below the median sensitivity of our analysis.
  •  
38.
  •  
39.
  • Ackermann, M., et al. (författare)
  • Unresolved Gamma-Ray Sky through its Angular Power Spectrum
  • 2018
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 121:24
  • Tidskriftsartikel (refereegranskat)abstract
    • The gamma-ray sky has been observed with unprecedented accuracy in the last decade by the Fermi-large area telescope (LAT), allowing us to resolve and understand the high-energy Universe. The nature of the remaining unresolved emission [unresolved gamma-ray background (UGRB)] below the LAT source detection threshold can be uncovered by characterizing the amplitude and angular scale of the UGRB fluctuation field. This Letter presents a measurement of the UGRB autocorrelation angular power spectrum based on eight years of Fermi-LAT Pass 8 data products. The analysis is designed to be robust against contamination from resolved sources and noise systematics. The sensitivity to subthreshold sources is greatly enhanced with respect to previous measurements. We find evidence (with similar to 3.7 sigma significance) that the scenario in which two classes of sources contribute to the UGRB signal is favored over a single class. A double power law with exponential cutoff can explain the anisotropy energy spectrum well, with photon indices of the two populations being 2.55 +/- 0.23 and 1.86 +/- 0.15.
  •  
40.
  • Ajello, M., et al. (författare)
  • A Decade of Gamma-Ray Bursts Observed by Fermi-LAT : The Second GRB Catalog
  • 2019
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 878:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Area Telescope (LAT) aboard the Fermi spacecraft routinely observes high-energy emission from gamma-ray bursts (GRBs). Here we present the second catalog of LAT-detected GRBs, covering the first 10 yr of operations, from 2008 to 2018 August 4. A total of 186 GRBs are found; of these, 91 show emission in the range 30-100 MeV (17 of which are seen only in this band) and 169 are detected above 100 MeV. Most of these sources were discovered by other instruments (Fermi/GBM, Swift/BAT, AGILE, INTEGRAL) or reported by the Interplanetary Network (IPN); the LAT has independently triggered on four GRBs. This catalog presents the results for all 186 GRBs. We study onset, duration, and temporal properties of each GRB, as well as spectral characteristics in the 100 MeV-100 GeV energy range. Particular attention is given to the photons with the highest energy. Compared with the first LAT GRB catalog, our rate of detection is significantly improved. The results generally confirm the main findings of the first catalog: the LAT primarily detects the brightest GBM bursts, and the high-energy emission shows delayed onset as well as longer duration. However, in this work we find delays exceeding 1 ks and several GRBs with durations over 10 ks. Furthermore, the larger number of LAT detections shows that these GRBs not only cover the high-fluence range of GBM-detected GRBs but also sample lower fluences. In addition, the greater number of detected GRBs with redshift estimates allows us to study their properties in both the observer and rest frames. Comparison of the observational results with theoretical predictions reveals that no model is currently able to explain all results, highlighting the role of LAT observations in driving theoretical models.
  •  
41.
  • Ajello, M., et al. (författare)
  • A Search for Cosmic-Ray Proton Anisotropy with the Fermi Large Area Telescope
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 883:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi Large Area Telescope (LAT) has amassed a large data set of primary cosmic-ray protons throughout its mission. In fact, it is the largest set of identified cosmic-ray protons ever collected at this energy. The LAT' s wide field of view and full-sky survey capabilities make it an excellent instrument for studying cosmic-ray anisotropy. As a space-based survey instrument, the LAT is sensitive to anisotropy in both R.A. and decl., while ground-based observations only measure the anisotropy in R.A. We present the results of the first-ever proton anisotropy search using Fermi LAT. The data set was collected over eight years and consists of approximately 179 million protons above 78 GeV, enabling it to probe dipole anisotropy below an amplitude of 10(-3), resulting in the most stringent limits on the decl. dependence of the dipole to date. We measure a dipole amplitude delta = 3.9 +/- 1.5 x 10(-4) with a p-value of 0.01 (pretrials) for protons with energy greater than 78 GeV. We discuss various systematic effects that could give rise to a dipole excess and calculate upper limits on the dipole amplitude as a function of minimum energy. The 95% confidence level upper limit on the dipole amplitude is delta(UL) = 1.3 x 10(-3) for protons with energy greater than 78 GeV and delta(UL )= 1.2 x 10(-3) for protons with energy greater than 251 GeV.
  •  
42.
  • Ajello, M., et al. (författare)
  • Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope
  • 2016
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 116:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the search for spectral irregularities induced by oscillations between photons and axionlike-particles (ALPs) in the gamma-ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5 x 10(-12) GeV-1 for ALP masses 0.5 less than or similar to m(a) less than or similar to 5 neV at 95% confidence. The limits are competitive with the sensitivity of planned laboratory experiments, and, together with other bounds, strongly constrain the possibility that ALPs can reduce the gamma-ray opacity of the Universe.
  •  
43.
  • Abdollahi, S., et al. (författare)
  • A gamma-ray determination of the Universe's star formation history
  • 2018
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 362:6418, s. 1031-1034
  • Tidskriftsartikel (refereegranskat)abstract
    • The light emitted by all galaxies over the history of the Universe produces the extragalactic background light (EBL) at ultraviolet, optical, and infrared wavelengths. The EBL is a source of opacity for gamma rays via photon-photon interactions, leaving an imprint in the spectra of distant gamma-ray sources. We measured this attenuation using 739 active galaxies and one gamma-ray burst detected by the Fermi Large Area Telescope. This allowed us to reconstruct the evolution of the EBL and determine the star formation history of the Universe over 90% of cosmic time. Our star formation history is consistent with independent measurements from galaxy surveys, peaking at redshift z similar to 2. Upper limits of the EBL at the epoch of reionization suggest a turnover in the abundance of faint galaxies at z similar to 6.
  •  
44.
  • Ajello, M., et al. (författare)
  • Bright Gamma-Ray Flares Observed in GRB 131108A
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 886:2
  • Tidskriftsartikel (refereegranskat)abstract
    • GRB 131108A is a bright long gamma-ray burst (GRB) detected by the Large Area Telescope and the Gamma-ray Burst Monitor on board the Fermi Gamma-ray Space Telescope. Dedicated temporal and spectral analyses reveal three ?-ray flares dominating above 100 MeV, which are not directly related to the prompt emission in the Gamma-ray Burst Monitor band (10 keV?10 MeV). The high-energy light curve of GRB 131108A (100 MeV?10 GeV) shows an unusual evolution: a steep decay, followed by three flares with an underlying emission, and then a long-lasting decay phase. The detailed analysis of the ?-ray flares finds that the three flares are 6?20 times brighter than the underlying emission and are similar to each other. The fluence of each flare, (1.6?2.0)10(?6) erg cm(?2), is comparable to that of emission during the steep decay phase, 1.710(?6) erg cm(?2). The total fluence from three ?-ray flares is 5.310(?6) erg cm(?2). The three ?-ray flares show properties similar to the usual X-ray flares that are sharp flux increases, occurring in ?50% of afterglows, in some cases well after the prompt emission. Also, the temporal and spectral indices during the early steep decay phase and the decaying phase of each flare show the consistency with a relation of the curvature effect (
  •  
45.
  • Ackermann, M., et al. (författare)
  • Search for Gamma-Ray Emission from Local Primordial Black Holes with the Fermi Large Area Telescope
  • 2018
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 857:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Black holes with masses below approximately 10(15) g are expected to emit gamma-rays with energies above a few tens of MeV, which can be detected by the Fermi Large Area Telescope (LAT). Although black holes with these masses cannot be formed as a result of stellar evolution, they may have formed in the early universe and are therefore called primordial black holes (PBHs). Previous searches for PBHs have focused on either short-timescale bursts or the contribution of PBHs to the isotropic gamma-ray emission. We show that, in cases of individual PBHs, the Fermi-LAT is most sensitive to PBHs with temperatures above approximately 16 GeV and masses 6 x 10(11) g, which it can detect out to a distance of about 0.03 pc. These PBHs have a remaining lifetime of months to years at the start of the Fermi mission. They would appear as potentially moving point sources with gamma-ray emission that become spectrally harder and brighter with time until the PBH completely evaporates. In this paper, we develop a new algorithm to detect the proper motion of gamma-ray point sources, and apply it to 318 unassociated point sources at a high galactic latitude in the third Fermi-LAT source catalog. None of the unassociated point sources with spectra consistent with PBH evaporation show significant proper motion. Using the nondetection of PBH candidates, we derive a 99% confidence limit on the PBH evaporation rate in the vicinity of Earth, <(rho)over dot>(PBH) < 7.2 x 10(3) pc(-3) yr(-1). This limit is similar to the limits obtained with ground-based gamma-ray observatories.
  •  
46.
  • Ajello, M., et al. (författare)
  • Investigating the Nature of Late-time High-energy GRB Emission through Joint Fermi/Swift Observations
  • 2018
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 863:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We use joint observations by the Swift X-ray Telescope (XRT) and the Fermi Large Area Telescope (LAT) of gamma-ray burst (GRB) afterglows to investigate the nature of the long-lived high-energy emission observed by Fermi LAT. Joint broadband spectral modeling of XRT and LAT data reveals that LAT nondetections of bright X-ray afterglows are consistent with a cooling break in the inferred electron synchrotron spectrum below the LAT and/or XRT energy ranges. Such a break is sufficient to suppress the high-energy emission so as to be below the LAT detection threshold. By contrast, LAT-detected bursts are best fit by a synchrotron spectrum with a cooling break that lies either between or above the XRT and LAT energy ranges. We speculate that the primary difference between GRBs with LAT afterglow detections and the nondetected population may be in the type of circumstellar environment in which these bursts occur, with late-time LAT detections preferentially selecting GRBs that occur in low wind-like circumburst density profiles. Furthermore, we find no evidence of high-energy emission in the LAT-detected population significantly in excess of the flux expected from the electron synchrotron spectrum fit to the observed X-ray emission. The lack of excess emission at high energies could be due to a shocked external medium in which the energy density in the magnetic field is stronger than or comparable to that of the relativistic electrons behind the shock, precluding the production of a dominant synchrotron self-Compton (SSC) component in the LAT energy range. Alternatively, the peak of the SSC emission could be beyond the 0.1-100 GeV energy range considered for this analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-46 av 46

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy