SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burger Scheidlin C.) srt2:(2024)"

Sökning: WFRF:(Burger Scheidlin C.) > (2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aharonian, F., et al. (författare)
  • HESS observations of the 2021 periastron passage of PSR B1259-63/LS 2883
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 687
  • Tidskriftsartikel (refereegranskat)abstract
    • PSR B1259-63/LS 2883 is a gamma-ray binary system that hosts a pulsar in an eccentric orbit, with a 3.4 yr period, around an O9.5Ve star (LS 2883). At orbital phases close to periastron passages, the system radiates bright and variable non-thermal emission, for which the temporal and spectral properties of this emission are, for now, poorly understood. In this regard, very high-energy (VHE) emission is especially useful to study and constrain radiation processes and particle acceleration in the system. We report on an extensive VHE observation campaign conducted with the High Energy Stereoscopic System, comprised of approximately 100 h of data taken over five months, from t(p) - 24 days to t(p) + 127 days around the system's 2021 periastron passage (where t(p) is the time of periastron). We also present the timing and spectral analyses of the source. The VHE light curve in 2021 is consistent overall with the stacked light curve of all previous observations. Within the light curve, we report a VHE maximum at times coincident with the third X-ray peak first detected in the 2021 X-ray light curve. In the light curve - although sparsely sampled in this time period - we see no VHE enhancement during the second disc crossing. In addition, we see no correspondence to the 2021 GeV flare in the VHE light curve. The VHE spectrum obtained from the analysis of the 2021 dataset is best described by a power law of spectral index Gamma = 2.65 +/- 0.04(stat) +/- 0.04(sys), a value consistent with the spectral index obtained from the analysis of data collected with H.E.S.S. during the previous observations of the source. We report spectral variability with a difference of Delta Gamma = 0.56 +/- 0.18(stat) +/- 0.10(sys) at 95% confidence intervals, between sub-periods of the 2021 dataset. We also detail our investigation into X-ray/TeV and GeV/TeV flux correlations in the 2021 periastron passage. We find a linear correlation between contemporaneous flux values of X-ray and TeV datasets, detected mainly after t(p) + 25 days, suggesting a change in the available energy for non-thermal radiation processes. We detect no significant correlation between GeV and TeV flux points, within the uncertainties of the measurements, from similar to t(p) - 23 days to similar to t(p) + 126 days. This suggests that the GeV and TeV emission originate from different electron populations.
  •  
2.
  • Aharonian, F., et al. (författare)
  • Unveiling extended gamma-ray emission around HESS J1813-178
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 686
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. HESS J1813-178 is a very-high-energy gamma-ray source spatially coincident with the young and energetic pulsar PSR J1813-1749 and thought to be associated with its pulsar wind nebula (PWN). Recently, evidence for extended high-energy emission in the vicinity of the pulsar has been revealed in the Fermi Large Area Telescope (LAT) data. This motivates revisiting the HESS J1813-178 region, taking advantage of improved analysis methods and an extended dataset. Aims. Using data taken by the High Energy Stereoscopic System (H.E.S.S.) experiment and the Fermi-LAT, we aim to describe the gamma-ray emission in the region with a consistent model, to provide insights into its origin. Methods. We performed a likelihood-based analysis on 32 hours of H.E.S.S. data and 12 yr of Fermi-LAT data and we fitted a spectromorphological model to the combined datasets. These results allowed us to develop a physical model for the origin of the observed.-ray emission in the region. Results. In addition to the compact very-high-energy gamma-ray emission centred on the pulsar, we find a significant yet previously undetected component along the Galactic plane. With Fermi-LAT data, we confirm extended high-energy emission consistent with the position and elongation of the extended emission observed with H.E.S.S. These results establish a consistent description of the emission in the region from GeV energies to several tens of TeV. Conclusions. This study suggests that HESS J1813-178 is associated with a gamma-ray PWN powered by PSR J1813-1749. A possible origin of the extended emission component is inverse Compton emission from electrons and positrons that have escaped the confines of the pulsar and form a halo around the PWN.
  •  
3.
  • Aharonian, F., et al. (författare)
  • TeV flaring activity of the AGN PKS 0625-354 in November 2018
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • Most gamma-ray detected active galactic nuclei are blazars with one of their relativistic jets pointing towards the Earth. Only a few objects belong to the class of radio galaxies or misaligned blazars. Here, we investigate the nature of the object PKS 0625-354, its gamma-ray flux and spectral variability and its broad-band spectral emission with observations from H.E.S.S., Fermi-LAT, Swift-XRT, and UVOT taken in November 2018. The H.E.S.S. light curve above 200 GeV shows an outburst in the first night of observations followed by a declining flux with a halving time scale of 5.9 h. The gamma gamma-opacity constrains the upper limit of the angle between the jet and the line of sight to similar to 10 degrees. The broad-band spectral energy distribution shows two humps and can be well fitted with a single-zone synchrotron self Compton emission model. We conclude that PKS 0625-354, as an object showing clear features of both blazars and radio galaxies, can be classified as an intermediate active galactic nuclei. Multi-wavelength studies of such intermediate objects exhibiting features of both blazars and radio galaxies are sparse but crucial for the understanding of the broad-band emission of gamma-ray detected active galactic nuclei in general.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy