SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bychkov Vitaly) "

Sökning: WFRF:(Bychkov Vitaly)

  • Resultat 1-50 av 78
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akkerman, V., et al. (författare)
  • Analysis of flame acceleration induced by wall friction in open tubes
  • 2010
  • Ingår i: Physics of Fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 22:5, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Spontaneous flame acceleration leading to explosion triggering in open tubes/channels due to wall friction was analytically and computationally studied. It was first demonstrated that the acceleration is affected when the thermal expansion across the flame exceeds a critical value depending on the combustion configuration. For the axisymmetric flame propagation in cylindrical tubes with both ends open, a theory of the initial (exponential) stage of flame acceleration in the quasi-isobaric limit was developed and substantiated by extensive numerical simulation of the hydrodynamics and combustion with an Arrhenius reaction. The dynamics of the flame shape, velocity, and acceleration rate, as well as the velocity profile ahead and behind the flame, have been determined. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3425646]
  •  
2.
  •  
3.
  • Akkerman, V., et al. (författare)
  • Flow-flame interaction in a closed chamber
  • 2008
  • Ingår i: Physics of Fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 20:5, s. 21-
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous studies of flame interaction with a single vortex and recent simulations of burning in vortex arrays in open tubes demonstrated the same tendency for the turbulent burning rate proportional to U-rms lambda(2/3), where U-rms is the root-mean-square velocity and lambda is the vortex size. Here, it is demonstrated that this tendency is not universal for turbulent burning. Flame interaction with vortex arrays is investigated for the geometry of a closed burning chamber by using direct numerical simulations of the complete set of gas-dynamic combustion equations. Various initial conditions in the chamber are considered, including gas at rest and several systems of vortices of different intensities and sizes. It is found that the burning rate in a closed chamber (inverse burning time) depends strongly on the vortex intensity; at sufficiently high intensities it increases with U-rms approximately linearly in agreement with the above tendency. On the contrary, dependence of the burning rate on the vortex size is nonmonotonic and qualitatively different from the law lambda(2/3). It is shown that there is an optimal vortex size in a closed chamber, which provides the fastest total burning rate. In the present work, the optimal size is six times smaller than the chamber height.
  •  
4.
  • Akkerman, Vyacheslav, et al. (författare)
  • Impacts of the Lewis and Markstein numbers effects on the flame acceleration in channels
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The effects of flame stretch and thermal/molecular diffusion on the flame acceleration in channels are quantified by means of the analytical and computational endeavours. The internal transport flame properties are accounted in the theory by means of the Markstein number, Mk. Being a positive or negative function of the thermal-chemical combustion parameters, such as the thermal expansion ratio and the Lewis and Zeldovich numbers, the Markstein number either moderates or promotes the flame acceleration. While Mk may provide a substantial impact on the flame acceleration rate in narrow channels, this effects diminishes with the increase of the channel width. The analysis is accompanied by extensive computational simulations of the Navier-Stokes combustion equations, which clarify the impact of the Lewis number on the flame acceleration. It is obtained that, for Le below a certain critical value, at the initial stage of flame acceleration, a globally-convex flame front is splits into two or more "fingers", accompanied by a drastic increase in the flame surface area and associated enhancement of the flame acceleration. Overall, the thermal-diffusive effects substantially facilitate the flame acceleration scenario, thereby advancing a potential deflagration-to-detonation transition. 
  •  
5.
  •  
6.
  • Akkerman, Vyacheslav, et al. (författare)
  • Self-similar accelerative propagation of expanding wrinkled flames and explosion triggering
  • 2011
  • Ingår i: Physical Review E, Statistical, nonlinear and soft matter physics. - : American Physical Society. - 1539-3755 .- 1550-2376. ; 83, s. 026305-
  • Tidskriftsartikel (refereegranskat)abstract
    • The formulation of Taylor on the self-similar propagation of an expanding spherical piston with constant velocity was extended to an instability-wrinkled deflagration front undergoing acceleration with RF∝tα, where RF is the instantaneous flame radius, t the time, and α a constant exponent. The formulation describes radial compression waves pushed by the front, trajectories of gas particles, and the explosion condition in the gas upstream of the front. The instant and position of explosion are determined for a given reaction mechanism. For a step-function induction time, analytic formulas for the explosion time and position are derived, showing their dependence on the reaction and flow parameters including thermal expansion, specific heat ratio, and acceleration of the front.
  •  
7.
  • Akkerman, V'yacheslav, et al. (författare)
  • Accelerating flames in cylindrical tubes with nonslip at the walls
  • 2006
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180 .- 1556-2921. ; 145:1-2, s. 206-219
  • Tidskriftsartikel (refereegranskat)abstract
    • An analytical theory of flame acceleration in cylindrical tubes with one end closed is developed. It is shown that all realistic flames with a large density drop at the front accelerate exponentially because of the nonslip at the tube walls. Such acceleration mechanism is not limited in time and, eventually, it may lead to detonation triggering. It is found that the acceleration rate decreases with the Reynolds number of the flow. On the contrary, the acceleration rate grows with the thermal expansion of the burning matter. It is shown that the flame shape and the velocity profile remain self-similar during the flame acceleration. The theory is validated by extensive direct numerical simulations. The simulations are performed for the complete set of combustion and hydrodynamic equations including thermal conduction, diffusion, viscosity, and chemical kinetics. The simulation results are in very good agreement with the analytical theory.
  •  
8.
  •  
9.
  • Akkerman, V'yacheslav, et al. (författare)
  • Fast flame acceleration and deflagration-to-detonation transition in smooth and obstructed tubes, channels and slits
  • 2013
  • Ingår i: 8th US National Combustion Meeting 2013. - : Western States Section/Combustion Institute. - 9781627488426 ; , s. 970-978
  • Konferensbidrag (refereegranskat)abstract
    • This work is devoted to the comprehensive analytical, computational and experimental investigation of various stages of flame acceleration in narrow chambers. We consider mesoscale two-dimensional channels and cylindrical tubes, smooth and obstructed, and sub-millimeter gaps between two parallel plates. The evolution of the flame shape, propagation speed, acceleration rate, and velocity profiles nearby the flamefront are determined for each configuration, with the theories substantiated by the numerical simulations of the hydrodynamics and combustion equations with an Arrhenius reaction, and by the experiments on premixed hydrogen-oxygen and ethylene-oxygen flames. The detailed analyses demonstrate three different mechanisms of flame acceleration: 1) At the early stages of burning at the closed tube end, the flamefront acquires a finger-shape and demonstrates strong acceleration during a short time interval. While this precursor acceleration mechanism is terminated as soon as the flamefornt touches the side wall of the tube, having a little relation to the deflagration-to-detonation transition (DDT) for relatively slow, hydrocarbon flames; for fast (e.g. hydrogen-oxygen) flames, even a short finger-flame acceleration may amplify the flame propagation speed up to sonic values, with an important effect on the subsequent DDT process. 2) On the other hand, the classical mechanism of flame acceleration due to wall friction in smooth tubes is basically unlimited in time, but it depends noticeably on the tube width such that the acceleration rate decreases strongly with the Reynolds number. The entire DDT scenario includes four distinctive stages: (i) initial exponential acceleration at the quasi-incompressible state; (ii) moderation of the process because of gas compression; (iii) eventual saturation to a quasisteady, high-speed flames correlated with the Chapman-Jouguet deflagration; (iv) finally, the heating of the fuel mixture leads to the explosion ahead of the flame front, which develops into a self-supporting detonation. 3) In addition, we have revealed a physical mechanism of extremely fast flame acceleration in channels/tubes with obstacles. Combining the "benefits" of 1) and 2), this new mechanism is based on delayed burning between the obstacles, creating a powerful jet-flow and thereby driving the acceleration, which is extremely strong and independent of the Reynolds number, so the effect can be fruitfully utilized at industrial scales. Understanding of this mechanism provides the guide for optimization of the obstacle shape, while this task required tantalizing cut-and-try methods previously. On the other hand, our formulation opens new technological possibilities of DDT in micro-combustion.
  •  
10.
  • Akkerman, V'yacheslav, et al. (författare)
  • Flame oscillations in tubes with nonslip at the walls
  • 2006
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180 .- 1556-2921. ; 145:4, s. 675-687
  • Tidskriftsartikel (refereegranskat)abstract
    • A laminar premixed flame front propagating in a two-dimensional tube is considered with nonslip at the walls and with both ends open. The problem of flame propagation is solved using direct numerical simulations of the complete set of hydrodynamic equations including thermal conduction, diffusion, viscosity, and chemical kinetics. As a result, it is shown that flame interaction with the walls leads to the oscillating regime of burning. The oscillations involve variations of the curved flame shape and the velocity of flame propagation. The oscillation parameters depend on the characteristic tube width, which controls the Reynolds number of the flow. In narrow tubes the oscillations are rather weak, while in wider tubes they become stronger with well-pronounced nonlinear effects. The period of oscillations increases for wider tubes, while the average flame length scaled by the tube diameter decreases only slightly with increasing tube width. The average flame length calculated in the present work is in agreement with that obtained in the experiments. Numerical results reduce the gap between the theory of turbulent flames and the experiments on turbulent combustion in tubes.
  •  
11.
  •  
12.
  • Akkerman, V'yacheslav, et al. (författare)
  • Theory of flame acceleration in open/vented obstructed pipes
  • 2016
  • Ingår i: 2016 Spring Technical Meeting of the Eastern States Section of the Combustion Institute, ESSCI 2016. - : Eastern States Section of the Combustion Institute.
  • Konferensbidrag (refereegranskat)abstract
    • A shockless, conceptually-laminar formulation on extremely fast flame acceleration in semi-open obstructed pipes [Physical Review Letters 101 (2008) 164501; Combust. Flame 157 (2010) 1012], Refs. [8-9] is extended to pipes with both ends open/vented. The acceleration is devoted to a powerful jet-flow produced by delayed combustion in the pockets between the obstacles, and it leads to a prompt deflagration-to-detonation transition event. Starting with inviscid approximation, the analysis subsequently incorporates the viscous forces (hydraulic resistance). The theory is validated by the recent experiments [http://arxiv.org/abs/1208.6453], Ref. [11]. It is shown that hydraulic resistance is not required to drive the flame acceleration. In contrast, this is a supplementary effect, which actually moderates the acceleration rate. On the other hand, hydraulic resistance plays an important role: it is responsible for the initial delay, before the flame acceleration onset, observed in the experiments. It is demonstrated that flames accelerate strongly in open/vented obstructed pipes, and the acceleration mechanism is qualitatively the same as that in the semi-open ones. However, because of the flame-generated flow distributed upward and downward of the flame front, the acceleration rate in open pipes is noticeably less than that in the semi-open ones.
  •  
13.
  • Akkerman, V'yacheslav, 1981- (författare)
  • Turbulent burning, flame acceleration, explosion triggering
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The present thesis considers several important problems of combustion theory, which are closely related to each other: turbulent burning, flame interaction with walls in different geometries, flame acceleration and detonation triggering. The theory of turbulent burning is developed within the renormalization approach. The theory takes into account realistic thermal expansion of burning matter. Unlike previous renormalization models of turbulent burning, the theory includes flame interaction with vortices aligned both perpendicular and parallel to average direction of flame propagation. The perpendicular vortices distort a flame front due to kinematical drift; the parallel vortices modify the flame shape because of the centrifugal force. A corrugated flame front consumes more fuel mixture per unit of time and propagates much faster. The Darrieus-Landau instability is also included in the theory. The instability becomes especially important when the characteristic length scale of the flow is large. Flame interaction with non-slip walls is another large-scale effect, which influences the flame shape and the turbulent burning rate. This interaction is investigated in the thesis in different geometries of tubes with open / closed ends. When the tube ends are open, then flame interaction with non-slip walls leads to an oscillating regime of burning. Flame oscillations are investigated for different flame parameters and tube widths. The average increase in the burning rate in the oscillations is found. Then, propagating from a closed tube end, a flame accelerates according to the Shelkin mechanism. In the theses, an analytical theory of laminar flame acceleration is developed. The theory predicts the acceleration rate, the flame shape and the velocity profile in the flow pushed by the flame. The theory is validated by extensive numerical simulations. An alternative mechanism of flame acceleration is also considered, which is possible at the initial stages of burning in tubes. The mechanism is investigated using the analytical theory and direct numerical simulations. The analytical and numerical results are in very good agreement with previous experiments on “tulip” flames. The analytical theory of explosion triggering by an accelerating flame is developed. The theory describes heating of the fuel mixture by a compression wave pushed by an accelerating flame. As a result, the fuel mixture may explode ahead of the flame front. The explosion time is calculated. The theory shows good agreement with previous numerical simulations on deflagration-to-detonation transition in laminar flows. Flame interaction with sound waves is studied in the geometry of a flame propagating to a closed tube end. It is demonstrated numerically that intrinsic flame oscillations coming into resonance with acoustic waves may lead to violent folding of the flame front with a drastic increase in the burning rate. The flame folding is related to the Rayleigh-Taylor instability developing at the flame front in the oscillating acceleration field of the acoustic wave.
  •  
14.
  • Akkerman, V’yacheslav, et al. (författare)
  • Turbulent flow produced by Piston Motion in a Spark-ignition engine
  • 2009
  • Ingår i: Flow Turbulence and Combustion. - : Springer. - 1386-6184 .- 1573-1987. ; 82:3, s. 317-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulence produced by the piston motion in spark-ignition engines is studied by 2D axisymmetric numerical simulations in the cylindrical geometry as in the theoretical and experimental work by Breuer et al (Flow Turb. Combust. 74 (2005) 145, Ref. [1]). The simulations are based on the Navier-Stokes gas-dynamic equations including viscosity, thermal conduction and non-slip at the walls. Piston motion is taken into account as a boundary condition. The turbulent flow is investigated for a wide range of the engine speed, 1000-4000 rpm, assuming both zero and non-zero initial turbulence. The turbulent rms-velocity and the integral length scale are investigated in axial and radial directions. The rms-turbulent velocity is typically an order-of-magnitude smaller than the piston speed. In the case of zero initial turbulence, the flow at the top-dead-center may be described as a combination of two large-scale vortex rings of a size determined by the engine geometry. When initial turbulence is strong, then the integral turbulent length demonstrates self-similar properties in a large range of crank angles. The results obtained agree with the experimental observations of [1].
  •  
15.
  • Akkerman, V'yacheslav, et al. (författare)
  • Velocity of weakly turbulent flames of finite thickness
  • 2005
  • Ingår i: Combustion theory and modelling. - Bristol : Institute of Physics Publ.. - 1364-7830 .- 1741-3559. ; 9:2, s. 323-351
  • Tidskriftsartikel (refereegranskat)abstract
    • The velocity increase of a weakly turbulent flame of finite thickness is investigated using analytical theory developed in previous papers. The obtained velocity increase depends on the flow parameters: on the turbulent intensity, on the turbulent spectrum and on the characteristic length scale. It also depends on the thermal and chemical properties of the burning matter: thermal expansion, the Markstein number and the temperature dependence of transport coefficients. It is shown that the influence of the finite flame thickness is especially strong close to the resonance point, when the wavelength of the turbulent harmonic is equal to the cut off wavelength of the Darrieus-Landau instability. The velocity increase is almost independent of the Prandtl number. On the contrary, the Markstein number is one of the most important parameters controlling the velocity increase. The relative role of the external turbulence and the Darrieus-Landau instability for the velocity increase is studied for different parameters of the flow and the burning matter. The velocity increase for turbulent flames in methane and propane fuel mixtures is calculated for different values of the equivalence ratio. The present theoretical results are compared with previous experiments on turbulent flames. In order to perform the comparison, the theoretical results of the present paper are extrapolated to the case of a strongly corrugated flame front using the ideas of self-similar flame dynamics. The obtained theoretical results are in a reasonable agreement with the experimental data, taking into account the uncertainties of both the theory and the experiments. It is shown that in many experiments on turbulent flames the Darrieus-Landau instability is more important for the flame velocity than the external turbulence.
  •  
16.
  •  
17.
  • Bilgili, Serdar, et al. (författare)
  • Impacts of the Lewis and Markstein numbers on premixed flame acceleration in channels due to wall friction
  • 2022
  • Ingår i: Physics of fluids. - : American Institute of Physics (AIP). - 1070-6631 .- 1089-7666. ; 34:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of flame stretch as well as that of thermal and molecular diffusion on the scenario of flame acceleration in channels are quantified by means of computational and analytical endeavors. The analytical formulation incorporates the internal transport flame properties into the theory of flame acceleration due to wall friction by means of the Markstein number, which characterizes the flame response to curvature and stretch. Being a positive or negative quantity and a function of the thermal-chemical combustion parameters, such as the thermal expansion ratio as well as the Lewis and Zeldovich numbers, the Markstein number either moderates or promotes flame acceleration. While the Markstein number may provide a substantial impact on the flame acceleration rate in narrow channels, this effect diminishes with increase in the channel width. The analytical formulation is accompanied by extensive computational simulations of the reacting flow equations, which clarify the impact of the Lewis number on flame acceleration. It is noted that for Lewis numbers below a certain critical value, at the initial stage of flame acceleration, a globally convex flame front splits into two or more finger-like segments, accompanied by a drastic increase in the flame front surface area and associated enhancement of flame acceleration. Later, however, these segments of the flame front meet, promptly consuming cavities and pockets, which substantially decreases the flame surface area and moderates acceleration. Eventually, this dynamics results in a single, globally convex flame, which keeps accelerating. Overall, the thermal-diffusive effects substantially facilitate flame acceleration, thereby advancing a potential deflagration-to-detonation transition.
  •  
18.
  • Bychkov, Vitaly, et al. (författare)
  • Analysis of flame acceleration in open or vented obstructed pipes
  • 2017
  • Ingår i: PHYSICAL REVIEW E. - 2470-0045 .- 2470-0053. ; 95:1
  • Tidskriftsartikel (refereegranskat)abstract
    • While flame propagation through obstacles is often associated with turbulence and/or shocks, Bychkov et al. [V. Bychkov et al., Phys. Rev. Lett. 101, 164501 (2008)] have revealed a shockless, conceptually laminar mechanism of extremely fast flame acceleration in semiopen obstructed pipes (one end of a pipe is closed; a flame is ignited at the closed end and propagates towards the open one). The acceleration is devoted to a powerful jet flow produced by delayed combustion in the spaces between the obstacles, with turbulence playing only a supplementary role in this process. In the present work, this formulation is extended to pipes with both ends open in order to describe the recent experiments and modeling by Yanez et al. [J. Yanez et al., arXiv: 1208.6453] as well as the simulations by Middha and Hansen [P. Middha and O. R. Hansen, Process Safety Prog. 27, 192 (2008)]. It is demonstrated that flames accelerate strongly in open or vented obstructed pipes and the acceleration mechanism is similar to that in semiopen ones (shockless and laminar), although acceleration is weaker in open pipes. Starting with an inviscid approximation, we subsequently incorporate hydraulic resistance (viscous forces) into the analysis for the sake of comparing its role to that of a jet flow driving acceleration. It is shown that hydraulic resistance is actually not required to drive flame acceleration. In contrast, this is a supplementary effect, which moderates acceleration. On the other hand, viscous forces are nevertheless an important effect because they are responsible for the initial delay occurring before the flame acceleration onset, which is observed in the experiments and simulations. Accounting for this effect provides good agreement between the experiments, modeling, and the present theory.
  •  
19.
  • Bychkov, Vitaly, et al. (författare)
  • Combustion Phenomena in Modern Physics : I. Inertial Confinement Fusion
  • 2015
  • Ingår i: Progress in Energy and Combustion Science. - : Elsevier BV. - 0360-1285 .- 1873-216X. ; 47, s. 32-59
  • Forskningsöversikt (refereegranskat)abstract
    • The overarching objective of the present endeavor is to demonstrate the universal character of combustion phenomena for various areas of modern physics, focusing on inertial confinement fusion (ICF) in this review. We present the key features of laser deflagration, and consider the similarities and differences between the laser plasma flow and the slow combustion front. We discuss the linear stage of the Rayleigh-Taylor instability in laser ablation, short-wavelength stabilization of the instability due to the mass flow, and demonstrate the importance of the concepts and methods of combustion science for an understanding of the corresponding ICF processes. We show the possibility of the Darrieus-Landau instability in the laser ablation flow and discuss the specific features of the instability at the linear and nonlinear stages as compared to the combustion counterpart of this phenomenon. We consider the nonlinear stage of the Rayleigh-Taylor instability in the ICF and generation of ultra-high magnetic field by the instability, and show that proper understanding of vorticity production in the laser plasma and, hence, of the magnetic field generation requires concepts from combustion science.
  •  
20.
  •  
21.
  • Bychkov, Vitaly, et al. (författare)
  • Explosion triggering by an accelerating flame
  • 2006
  • Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics. - 1063-651X .- 1095-3787. ; 73:6, s. 066305-
  • Tidskriftsartikel (refereegranskat)abstract
    • The analytical theory of explosion triggering by an accelerating flame is developed. The theory describes the structure of a one-dimensional isentropic compression wave pushed by the flame front. The condition of explosion in the gas mixture ahead of the flame front is derived; the instant of the explosion is determined provided that a mechanism of chemical kinetics is known. As an example, it is demonstrated how the problem is solved in the case of a single reaction of Arrhenius type, controlling combustion both inside the flame front and ahead of the flame. The model of an Arrhenius reaction with a cutoff temperature is also considered. The limitations of the theory due to the shock formation in the compression wave are found. Comparison of the theoretical results to the previous numerical simulations shows good agreement.
  •  
22.
  • Bychkov, Vitaly, et al. (författare)
  • Flame acceleration in the early stages of burning in tubes
  • 2007
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 1556-2921 .- 0010-2180. ; 150:4, s. 263-276
  • Tidskriftsartikel (refereegranskat)abstract
    • Acceleration of premixed laminar flames in the early stages of burning in long tubes is considered. The acceleration mechanism was suggested earlier by Clanet and Searby [Combust. Flame 105 (1996) 225]. Acceleration happens due to the initial ignition geometry at the tube axis when a flame develops to a finger-shaped front, with surface area growing exponentially in time. Flame surface area grows quite fast but only for a short time. The analytical theory of flame acceleration is developed, which determines the growth rate, the total acceleration time, and the maximal increase of the flame surface area. Direct numerical simulations of the process are performed for the complete set of combustion equations. The simulations results and the theory are in good agreement with the previous experiments. The numerical simulations also demonstrate flame deceleration, which follows acceleration, and the so-called '' tulip flames.'' (c) 2007 Published by Elsevier Inc. on behalf of The Combustion Institute.
  •  
23.
  • Bychkov, Vitaly, et al. (författare)
  • Gas compression moderates flame acceleration in deflagration-to-detonation transition
  • 2012
  • Ingår i: Combustion Science and Technology. - : Informa UK Limited. - 0010-2202 .- 1563-521X. ; 184:7-8, s. 1066-1079
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of gas compression at the developed stages of flame acceleration in smooth-wall and obstructed channels is studied. We demonstrate analytically that gas compression moderates the acceleration rate, and we perform numerical simulations within the problem of flame transition to detonation. It is shown that flame acceleration undergoes three distinctive stages: (1) initial exponential acceleration in the incompressible regime, (2) moderation of the acceleration process due to gas compression, so that the exponential acceleration state goes over to a much slower one, (3) eventual saturation to a steady (or statistically steady) high-speed deflagration velocity, which may be correlated with the Chapman-Jouguet deflagration speed. The possibility of deflagration-to-detonation transition is demonstrated.
  •  
24.
  •  
25.
  •  
26.
  • Bychkov, Vitaly, 1968-, et al. (författare)
  • Magnetohydrodynamic instability in plasmas with intrinsic magnetization
  • 2010
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 17:11, s. 112107-112112
  • Tidskriftsartikel (refereegranskat)abstract
    • From a magnetofluid description with intrinsic magnetization, a new plasma instability is obtained. The plasma magnetization is produced by the collective electron spin. The instability develops in a nonuniform plasma when the electron concentration and temperature vary along an externally applied magnetic field. Alfvén waves play an important role in the instability. The instability properties are numerically investigated for a particular example of an ultrarelativistic degenerate plasma in exploding white dwarfs.
  •  
27.
  • Bychkov, Vitaly, et al. (författare)
  • Nonliner dynamics of corrugated doping fronts in organic optoelectronic devices
  • 2012
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 85:24, s. 245212-
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, it was demonstrated that electrochemical doping fronts in organic semiconductors exhibit a new fundamental instability growing from multidimensional perturbations [ Bychkov et al.  Phys. Rev. Lett. 107 016103 (2011)]. In the instability development, linear growth of tiny perturbations goes over into a nonlinear stage of strongly distorted doping fronts. Here we develop the nonlinear theory of the doping front instability and predict the key parameters of a corrugated doping front, such as its velocity, in close agreement with the experimental data. We show that the instability makes the electrochemical doping process considerably faster. We obtain the self-similar properties of the front shape corresponding to the maximal propagation velocity, which allows for a wide range of controlling the doping process in the experiments. The developed theory provides the guide for optimizing the performance of organic optoelectronic devices such as light-emitting electrochemical cells.
  •  
28.
  • Bychkov, Vitaly, et al. (författare)
  • On the Theory of Turbulent Flame Velocity
  • 2007
  • Ingår i: Combustion Science and Technology. - : Informa UK Limited. - 0010-2202 .- 1563-521X. ; 179:1&2, s. 137-151
  • Tidskriftsartikel (refereegranskat)abstract
    • The renormalization ideas of self-similar dynamics of a strongly turbulent flame front are applied to the case of a flame with realistically large thermal expansion of the burning matter. In that case a flame front is corrugated both by external turbulence and the intrinsic flame instability. The analytical formulas for the velocity of flame propagation are obtained. It is demonstrated that the flame instability is of principal importance when the integral turbulent length scale is much larger than the cutoff wavelength of the instability. The developed theory is used to analyze recent experiments on turbulent flames propagating in tubes.
  •  
29.
  • Bychkov, Vitaly, et al. (författare)
  • Physical Mechanism of Ultrafast Flame Acceleration
  • 2008
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 101:16, s. 164501-1-164501-4
  • Tidskriftsartikel (refereegranskat)abstract
    • We explain the physical mechanism of ultrafast flame acceleration in obstructed channels used in modern experiments on detonation triggering. It is demonstrated that delayed burning between the obstacles creates a powerful jetflow, driving the acceleration. This mechanism is much stronger than the classical Shelkin scenario of flame acceleration due to nonslip at the channel walls. The mechanism under study is independent of the Reynolds number, with turbulence playing only a supplementary role. The flame front accelerates exponentially; the analytical formula for the growth rate is obtained. The theory is validated by extensive direct numerical simulations and comparison to previous experiments.
  •  
30.
  • Bychkov, Vitaly, et al. (författare)
  • Role of Compressibility in Moderating Flame Acceleration in Tubes
  • 2010
  • Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics. - 1063-651X .- 1095-3787. ; 81:2, s. 026309-
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of gas compression on spontaneous flame acceleration leading to deflagration-to-detonation transition is studied theoretically for small Reynolds number flame propagation from the closed end of a tube. The theory assumes weak compressibility through expansion in small Mach number. Results show that the flame front accelerates exponentially during the initial stage of propagation when the Mach number is negligible. With continuous increase in the flame velocity with respect to the tube wall, the flame-generated compression waves subsequently moderate the acceleration process by affecting the flame shape and velocity, as well as the flow driven by the flame.
  •  
31.
  • Bychkov, Vitaly, 1968-, et al. (författare)
  • Speedup of doping fronts in organic semiconductors through plasma instability
  • 2011
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 107:1, s. 016103-016107
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of doping transformation fronts in organic semiconductor plasma is studied for application in light-emitting electrochemical cells. We show that new fundamental effects of the plasma dynamics can significantly improve the device performance. We obtain an electrodynamic instability, which distorts the doping fronts and increases the transformation rate considerably. We explain the physical mechanism of the instability, develop theory, provide experimental evidence, perform numerical simulations, and demonstrate how the instability strength may be amplified technologically. The electrodynamic plasma instability obtained also shows interesting similarity to the hydrodynamic Darrieus-Landau instability in combustion, laser ablation, and astrophysics.
  •  
32.
  • Bychkov, Vitaly, 1968-, et al. (författare)
  • The Darrieus-Landau instability in fast deflagration and laser ablation
  • 2008
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 15:3, s. 032702-
  • Tidskriftsartikel (refereegranskat)abstract
    • The problem of the Darrieus-Landau instability at a discontinuous deflagration front in a compressible flow is solved. Numerous previous attempts to solve this problem suffered from the deficit of boundary conditions. Here, the required additional boundary condition is derived rigorously taking into account the internal structure of the front. The derived condition implies a constant mass flux at the front; it reduces to the classical Darrieus-Landau condition in the limit of an incompressible flow. It is demonstrated that in general the solution to the problem depends on the type of energy source in the flow. In the common case of a strongly localized source, compression effects make the Darrieus-Landau instability considerably weaker. Particularly, the instability growth rate is reduced for laser ablation in comparison to the classical incompressible case. The instability disappears completely in the Chapman-Jouguet regime of ultimately fast deflagration.
  •  
33.
  • Bychkov, Vitaly, 1968-, et al. (författare)
  • The Rayleigh-Taylor instability and internal waves in quantum plasmas
  • 2008
  • Ingår i: Physics Letters A. - Amsterdam : North-Holland. - 0375-9601 .- 1873-2429. ; 372:17, s. 3042-3045
  • Tidskriftsartikel (refereegranskat)abstract
    • Influence of quantum effects on the internal waves and the Rayleigh-Taylor instability in plasma is investigated. It is shown that quantum pressure always stabilizes the RT instability. The problem is solved both in the limit of short-wavelength perturbations and exactly for density profiles with layers of exponential stratification. In the case of stable stratification, quantum pressure modifies the dispersion relation of the inertial waves. Because of the quantum effects, the internal waves may propagate in the transverse direction, which was impossible in the classical case. A specific form of pure quantum internal waves is obtained, which do not require any external gravitational field.
  •  
34.
  • Bychkov, Vitaly, 1968-, et al. (författare)
  • The Rayleigh-Taylor instability in inertial fusion, astrophysical plasma and flames
  • 2007
  • Ingår i: Plasma Physics and Controlled Fusion. - 1361-6587 .- 0741-3335. ; 49:12B, s. B513-B520
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous results are reviewed and new results are presented on the Rayleigh-Taylor instability in inertial confined fusion, flames and supernovae including gravitational and thermonuclear explosion mechanisms. The instability couples micro-scale plasma effects to large-scale hydrodynamic phenomena. In inertial fusion the instability reduces target compression. In supernovae the instability produces large-scale convection, which determines the fate of the star. The instability is often accompanied by mass flux through the unstable interface, which may have either a stabilizing or a destabilizing influence. Destabilization happens due to the Darrieus-Landau instability of a deflagration front. Still, it is unclear whether the instabilities lead to well-organized large-scale structures (bubbles) or to relatively isotropic turbulence (mixing layer)
  •  
35.
  •  
36.
  • Bychkov, Vitaly, 1968-, et al. (författare)
  • The structure of weak shocks in quantum plasmas
  • 2008
  • Ingår i: Physics of Plasmas. - New York : American Institute of Physics. - 1070-664X .- 1089-7674. ; 15:3, s. 032309-032322
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure of a weak shock in a quantum plasma is studied, taking into account both dissipation terms due to thermal conduction and dispersive quantum terms due to the Bohm potential. Unlike quantum systems without dissipations, even a small thermal conduction may lead to a stationary shock structure. In the limit of zero quantum effects, the monotonic Burgers solution for the weak shock is recovered. Still, even small quantum terms make the structure nonmonotonic with the shock driving a train of oscillations into the initial plasma. The oscillations propagate together with the shock. The oscillations become stronger as the role of Bohm potential increases in comparison with thermal conduction. The results could be of importance for laser-plasma interactions, such as inertial confinement fusion plasmas, and in astrophysical environments, as well as in condensed matter systems.
  •  
37.
  • Bychkov, Vitaly, et al. (författare)
  • Theory and modeling of accelerating flames in tubes
  • 2005
  • Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics. - 1063-651X .- 1095-3787. ; 72:4, s. 046307-
  • Tidskriftsartikel (refereegranskat)abstract
    • The analytical theory of premixed laminar flames accelerating in tubes is developed, which is an important part of the fundamental problem of flame transition to detonation. According to the theory, flames with realistically large density drop at the front accelerate exponentially from a closed end of a tube with nonslip at the walls. The acceleration is unlimited in time; it may go on until flame triggers detonation. The analytical formulas for the acceleration rate, for the flame shape and the velocity profile in the flow pushed by the flame are obtained. The theory is validated by extensive numerical simulations. The numerical simulations are performed for the complete set of hydrodynamic combustion equations including thermal conduction, viscosity, diffusion, and chemical kinetics. The theoretical predictions are in a good agreement with the numerical results. It is also shown how the developed theory can be used to understand acceleration of turbulent flames.
  •  
38.
  • Demir, Sinan, et al. (författare)
  • Towards a predictive scenario of a burning accident in a mining passage
  • 2017
  • Ingår i: Combustion theory and modelling. - : TAYLOR & FRANCIS LTD. - 1364-7830 .- 1741-3559. ; 21:6, s. 997-1022
  • Tidskriftsartikel (refereegranskat)abstract
    • To reveal the inner mechanisms of a combustion accident in a coalmine, the key stages and characteristics of premixed flame front evolution such as the flame shapes, propagation speeds, acceleration rates, run-up distances and flame-generated velocity profiles are scrutinised. The theories of globally spherical, expanding flames and of finger-flame acceleration are combined into a general analytical formulation. Two-dimensional and cylindrical mining passages are studied, with noticeably stronger acceleration found in the cylindrical geometry. The entire acceleration scenario may promote the total burning rate by up to two orders of magnitude, to a near-sonic value. Starting with gaseous combustion, the analysis is subsequently extended to gaseous-dusty environments. Specifically, combustible dust (e.g. coal), inert dust (e.g. sand), and their combination are considered, and the influence of the size and concentration of the dust particles is quantified. In particular, small particles influence flame propagation more than large ones, and flame acceleration increases with the concentration of a combustible dust, until the concentration attains a certain limit.
  •  
39.
  • Demirgok, Berk, et al. (författare)
  • Analysis of ethylene-oxygen combustion in micro-pipes
  • 2013
  • Ingår i: Fall Technical Meeting of the Eastern States Section of the Combustion Institute 2013. - : Combustion Institute. - 9781629937199 ; , s. 155-160
  • Konferensbidrag (refereegranskat)abstract
    • Propagation of premixed stoichiometric ethylene-oxygen flames in cylindrical pipes of sub/near-millimeter radii is investigated-computationally, analytically and experimentally. Namely, various stages of flame evolution such as quasi-isobaric, exponential acceleration; its moderation due to gas compression; and eventual saturation to the Chapmen-Jouget deflagration are consdiered. Specifically, we have determined the dynamics and morphology of the flame front, its propagation velocity and acceleration rate. Due to viscous heating, the entire process can be followed by the detonation initiation ahead of the flame front. The computational component of this research includes numerical solution of the hydrodynamics and combustion equations with chemical kinetics represented by one-step Arrhenius reaction. The theoretical model accounts for small, but finite Mach number; and it assumes a plane-parallel flame-generated flow, zero flame thickness as well as large thermal expansion and flame-related Reynolds number. The overall study bridges the gap between the experiments of Wu et al. [Proc. Combust. Inst. 31 (2007) 2429] and the analytical formulation of Akkerman et al. [Combust. Flame 145 (2006) 206].
  •  
40.
  •  
41.
  •  
42.
  • Dion, Claude, 1970-, et al. (författare)
  • Anisotropic properties of spin avalanches in crystals of nanomagnets
  • 2013
  • Ingår i: Physical Review B - Condensed Matter and Materials Physics. - : American Physical Society. - 2469-9950 .- 2469-9969 .- 1098-0121 .- 1550-235X. ; 87:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Anisotropy effects for spin avalanches in crystals of nanomagnets are studied theoretically with the external magnetic field applied at an arbitrary angle to the easy axis. Starting with the Hamiltonian for a single nanomagnet in the crystal, two essential quantities characterizing spin avalanches are calculated: the activation and Zeeman energies. The calculation is performed numerically for a wide range of angles and analytical formulas are derived within the limit of small angles. The anisotropic properties of a single nanomagnet lead to anisotropic behavior of the magnetic deflagration speed. Modifications of the magnetic deflagration speed are investigated for different angles between the external magnetic field and the easy axis of the crystals. Anisotropic properties of magnetic detonation are also studied, which concern, first of all, the temperature behind the leading shock and the characteristic time of spin switching in the detonation.
  •  
43.
  • Dion, Claude, et al. (författare)
  • Dynamics of flame extinction in narrow channels with cold walls: Heat loss vs acceleration
  • 2021
  • Ingår i: Physics of Fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 33:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Propagation of a premixed flame from a closed to an open end in micro-channels with smooth non-slip isothermal walls is considered in the context of flame extinction dynamics. Powerful exponential flame acceleration in micro-channels with adiabatic walls has been demonstrated at the initial quasi-isobaric stage of the process [Bychkov et al., Phys. Rev. E 72, 046307 (2005)]. In contrast to the previous studies, here we investigate flame propagation in channels with isothermal walls. The problem is solved by means of high-fidelity laminar numerical simulations of the complete set of the Navier-Stokes combustion equations. For most of the problem parameter sets chosen, we obtain initial flame acceleration after ignition at the closed channel end. This acceleration resembles qualitatively the adiabatic case, but it develops noticeably slower, in an approximately linear regime instead of the exponential one and persists only for a limited time interval. Subsequently, heat loss to the walls reduces the temperature and hence the volume of the burnt gas behind the flame front, which produces a reverse flow in the direction of the closed channel end. When the amount of the burnt gas becomes sufficiently large, the reverse flow stops the acceleration process and drives the flame backwards with modifications of the flame front shape from convex to concave. Eventually, the flame extinguishes. Qualitatively, the process obtained reproduces a possible combustion failure during deflagration-to-detonation transition observed in previous experiments. We investigate the key characteristics of initial flame acceleration such as the acceleration rate and the maximum speed of the flame tip.
  •  
44.
  • Dion, Claude, 1970-, et al. (författare)
  • Flames in channels with cold walls : acceleration versus extinction
  • 2015
  • Ingår i: MCS 9.
  • Konferensbidrag (refereegranskat)abstract
    • The present work considers the problem of premixed flame front acceleration in microchannelswith smooth cold non-slip walls in the context of the deflagration-to-detonationtransition; the flame accelerates from the closed channel end to the open one. Recently, anumber of theoretical and computational papers have demonstrated the possibility of powerfulflame acceleration for micro-channels with adiabatic walls. In contrast to the previous studies,here we investigate the case of flame propagation in channels with isothermal cold walls. Theproblem is solved by using direct numerical simulations of the complete set of the Navier-Stokes combustion equations. We obtain flame extinction for narrow channels due to heat lossto the walls. However, for sufficiently wide channels, flame acceleration is found even for theconditions of cold walls in spite of the heat loss. Specifically, the flame accelerates in thelinear regime in that case. While this acceleration regime is quite different from theexponential acceleration predicted theoretically and obtained computationally for theadiabatic channels, it is consistent with the previous experimental observations, whichinevitably involve thermal losses to the walls. In this particular work, we focus on the effectof the Reynolds number of the flow on the manner of the flame acceleration.
  •  
45.
  • Jukimenko, Olexy, et al. (författare)
  • Counterpart of the Darrieus-Landau instability at a magnetic deflagration front
  • 2016
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 93:13
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic instability at the front of the spin avalanche in a crystal of molecular magnets is considered. This phenomenon reveals similar features with the Darrieus-Landau instability, inherent to classical combustion flame fronts. The instability growth rate and the cutoff wavelength are investigated with respect to the strength of the external magnetic field, both analytically in the limit of an infinitely thin front and numerically for finite-width fronts. The presence of quantum tunneling resonances is shown to increase the growth rate significantly, which may lead to a possible transition from deflagration to detonation regimes. Different orientations of the crystal easy axis are shown to exhibit opposite stability properties. In addition, we suggest experimental conditions that could evidence the instability and its influence on the magnetic deflagration velocity.
  •  
46.
  • Jukimenko, Olexy, et al. (författare)
  • Magnetic detonation structure in crystals of nanomagnets controlled by thermal conduction and volume viscosity
  • 2015
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X .- 2469-9950 .- 2469-9969. ; 91:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimentally detected ultrafast spin avalanches spreading in crystals of molecular (nano) magnets [Decelle et al., Phys. Rev. Lett. 102, 027203 (2009)] have recently been explained in terms of magnetic detonation [Modestov et al., Phys. Rev. Lett. 107, 207208 (2011)]. Here magnetic detonation structure is investigated by taking into account transport processes of the crystals such as thermal conduction and volume viscosity. The transport processes result in smooth profiles of the most important thermodynamical crystal parameters, temperature, density, and pressure, all over the magnetic detonation front, including the leading shock, which is one of the key regions of magnetic detonation. In the case of zero volume viscosity, thermal conduction leads to an isothermal discontinuity instead of the shock, for which temperature is continuous while density and pressure experience jump. It is also demonstrated that the thickness of the magnetic detonation front may be controlled by applying the transverse-magnetic field, which is important for possible experimental observations of magnetic detonation.
  •  
47.
  • Jukimenko, Olexy, et al. (författare)
  • Multidimensional Instability and Dynamics of Spin Avalanches in Crystals of Nanomagnets
  • 2014
  • Ingår i: Physical Review Letters. - : American Physical Society. - 1079-7114 .- 0031-9007. ; 113:21
  • Tidskriftsartikel (refereegranskat)abstract
    • We obtain a fundamental instability of the magnetization-switching fronts in superparamagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instability theory for both linear and nonlinear stages. By using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in combustion, inertial confinement fusion, and thermonuclear supernovae, and the instability of doping fronts in organic semiconductors.
  •  
48.
  • Jukimenko, Olexy, 1988-, et al. (författare)
  • Multilevel model for magnetic deflagration in nanomagnet crystals
  • 2017
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 95:17
  • Tidskriftsartikel (refereegranskat)abstract
    • We extend the existing theoretical model for determining the characteristic features of magnetic deflagration in nanomagnet crystals. For the first time, all energy levels are accounted for calculation of the the Zeeman energy, the deflagration velocity, and other parameters. It reduces the final temperature and significantly changes the propagation velocity of the spin-flipping front. We also consider the effect of a strong transverse magnetic field, and show that the latter significantly modifies the spin-state structure, leading to an uncertainty concerning the activation energy of the spin flipping. Our front velocity prediction for a crystal of Mn-12 acetate in a longitudinal magnetic field is in much better agreement with experimental data than the previous reduced-model results.
  •  
49.
  • Kobyakov, Dmitry, 1985- (författare)
  • Hydrodynamics of Binary Bose-Einstein Condensates and Hydro-elasticity of the Inner Crust of Neutron Stars
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the present thesis, “Hydrodynamics of Binary Bose-Einstein Condensates and Hydro-elasticity of the Inner Crust of Neutron Stars”, the hydrodynamic effects, instabilities and superfluid turbulence in binary immiscible ultracold gases, and hydro-elastic macroscopic coupled modes and microscopic structure of the inner layers of the crust of neutron stars, are studied. The ultracold gas dynamics can be realized in the laboratory. The excitation modes of the inner crust determine a number of observable properties such as elasticity, thermal properties and mass transport properties. Here we focus on expanding the details, rather than repeating the results presented in the published articles.In the part of the thesis related to atomic ultracold gases, we utilize the physical parameters in the experimentally realizable parameter region. We numerically simulate the coupled non-linear Schrödinger equations, and calculate observable quantities, such as phase and modulus of the order parameter, conditions needed for observation of the Rayleigh-Taylor instability and for turbulence generation. The numerical calculations are accompanied by analytical description of the processes. The dispersion relation for capillary-gravitational waves at the interface between two ultracold gases, is derived straightforwardly from the superfluid Lagrangian. The equations of motion for centre-of-mass of the superfluids are derived, and then used in our model of the quantum swapping of immiscible superfluids pressed by a strong external force. By numerical simulation, we find that the Kelvin-Helmholtz instability which occurs at the non-linear stage of the Rayleigh-Taylor instability, can generate quantum turbulence with peculiar properties. We find that two-dimensional superfluid systems with weak inter-component repulsion are different from previously studied strongly repulsive binary superfluids, because the quantum Kelvin-Helmholtz instability in weakly repulsive superfluids rolls up the whole interface forming a vortex bundle, similarly to dynamics of the shear fluid layers in the classical hydrodynamics. Production of vortex bundles favours the Kolmogorov spectrum of turbulence, and we find that the Kolmogorov scaling indeed is present in a freely decaying turbulence.In the part of the thesis related to neutron stars, we study the inner crust of neutron stars, where the fully ionized atomic nuclei coexist with a superfluid of neutrons. The interaction between superfluid neutrons and the crystallized Coulomb plasma is due to the interaction between density perturbations (interaction of the scalar type), and between the current - the non-dissipative entrainment effect (interaction of the vector type). We calculate velocities of the collective modes of the crystal coupled to superfluid neutrons. As an input we use the results of microscopic nuclear calculations in the framework of the compressible liquid drop model (the Lattimer and Swesty equation of state), and more recent effective Thomas-Fermi calculations with shell corrections (N. Chamel, and the Brussels theoretical nuclear physics group). Knowledge of velocities as functions of the matter density in the inner crust is important for calculation of a number of dynamic and transport properties. The heat transport properties of the inner crust are directly observable in accreting binary systems (low-mass x-ray binaries). The mass transport properties of the inner crust are directly linked to the rotational evolution, being a key physical ingredient of the pulsar glitch phenomenon. The elastic properties are related to the vibrational modes of the star, and to the breaking stress of the crust.In the second part of our work on neutron stars we investigate the microscopic structure of the inner crust treating the structure as an anisotropic crystal coupled to s-wave superfluid neutron liquid. As we analyse dynamics of the elementary excitations at higher wavenumbers (smaller scales), we reach the edge of the first Brillouin zone. The Lattimer-Swesty data is applicable for wavenumbers much smaller than the edge of the first Brillouin zone. We extrapolate the data through the whole first Brillouin zone to calculate the fastest growth rate of the unstable modes. The crucial step is to calculate the mode velocities in anisotropic crystal incorporating both the induced neutron-proton interactions, and the electron screening properties. We find that the combined influence of these two effects leads to softening of the longitudinal phonon of the lattice above about the Thomas-Fermi screening wavenumber of the electrons. The critical wavenumber when the frequency becomes purely imaginary is about  1/5 - 2/3  of the reciprocal lattice vector, thus validating our assumption. The imaginary mode frequency implies instability at finite wavenumbers. Our calculations suggest that the mode at the first Brillouin zone edge is the most unstable, and thus the structure experiences a displacive phase transition when the central ion of a unit cell of the body-cubic-centred lattice, is displaced to the cube face. Thus, the electronic structure of matter at densities above the neutron drip [1], is richer than previously appreciated, and new microscopic calculations of nuclear structure are necessary which take into account the high-wavenumber physics. Such calculations will provide crucial input to models interpreting the quasi-periodic oscillations in Soft Gamma Repeaters as magnetar x-ray flares, and to the theory of glitches of neutron stars.[1] The neutron drip density is ~3×1011 g cm-3.
  •  
50.
  • Kobyakov, Dmitry, et al. (författare)
  • Interface dynamics of a two-component Bose-Einstein condensate driven by an external force
  • 2011
  • Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics. - : American Physical Society. - 1050-2947 .- 1094-1622. ; 83:4, s. 043623-
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of an interface in a two-component Bose-Einstein condensate driven by a spatially uniform time-dependent force is studied. Starting from the Gross-Pitaevskii Lagrangian, the dispersion relation for linear waves and instabilities at the interface is derived by means of a variational approach. A number of diverse dynamical effects for different types of driving force is demonstrated, which includes the Rayleigh-Taylor instability for a constant force, the Richtmyer-Meshkov instability for a pulse force, dynamic stabilization of the Rayleigh-Taylor instability and onset of the parametric instability for an oscillating force. Gaussian Markovian and non-Markovian stochastic forces are also considered. It is found that the Markovian stochastic force does not produce any average effect on the dynamics of the interface, while the non-Markovian force leads to exponential perturbation growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 78
Typ av publikation
tidskriftsartikel (62)
konferensbidrag (8)
doktorsavhandling (4)
forskningsöversikt (3)
bokkapitel (1)
Typ av innehåll
refereegranskat (71)
övrigt vetenskapligt/konstnärligt (6)
populärvet., debatt m.m. (1)
Författare/redaktör
Bychkov, Vitaly (54)
Akkerman, V’yachesla ... (35)
Bychkov, Vitaly, 196 ... (20)
Valiev, Damir (19)
Modestov, Mikhail (19)
Eriksson, Lars-Erik, ... (17)
visa fler...
Marklund, Mattias, 1 ... (15)
Petchenko, Arkady (15)
Akkerman, V. (9)
Marklund, Mattias (8)
Law, Chung K. (7)
Eriksson, Lars-Erik (6)
Jukimenko, Olexy (5)
Law, C. K. (4)
Dion, Claude (4)
Lundh, Emil (4)
Kobyakov, Dmitry (4)
Demirgok, Berk (4)
Demir, Sinan (3)
Sadek, Jad (3)
Bezett, Alice (3)
Edman, Ludvig, 1967- (2)
Bilgili, Serdar (2)
Wu, Ming-Hsun (2)
Brodin, Gert, 1963- (2)
Marklund, Mattias, P ... (2)
Matyba, Piotr, 1982- (2)
Bastiaans, R. J. M. (1)
de Goey, L. P. H. (1)
van Oijen, J. A. (1)
Morella, Haley (1)
Valiev, D. M. (1)
Law, Chung (1)
Kuznetsov, Mikhail (1)
Akkerman, V'yachesla ... (1)
Bychkov, Vitaly, Doc ... (1)
Searby, Geoffrey, Pr ... (1)
Ivanov, Mikhail (1)
Brandenburg, Axel (1)
Brodin, Gert (1)
Bai, Xue-Song (1)
Chechetkin, V. M. (1)
Stenflo, Lennart (1)
Yu, Rixin (1)
Kuznetsov, M. (1)
Popov, M.V. (1)
Oparin, A.M. (1)
Fru, G. (1)
Lundh, Emil, Docent (1)
Chalagalla, Sri Hari ... (1)
visa färre...
Lärosäte
Umeå universitet (74)
Chalmers tekniska högskola (23)
Kungliga Tekniska Högskolan (7)
Stockholms universitet (6)
Lunds universitet (1)
Språk
Engelska (78)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (43)
Teknik (30)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy