SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Calin A) srt2:(2010-2014)"

Sökning: WFRF:(Calin A) > (2010-2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alvarez, S., et al. (författare)
  • PERIPHERAL MOTOR AXONS OF SOD1(G127X) MUTANT MICE ARE SUSCEPTIBLE TO ACTIVITY-DEPENDENT DEGENERATION
  • 2013
  • Ingår i: Neuroscience. - : Elsevier BV. - 0306-4522 .- 1873-7544. ; 241, s. 239-249
  • Tidskriftsartikel (refereegranskat)abstract
    • Motor neuron disorders may be associated with mitochondrial dysfunction, and repetitive electrical impulse conduction during energy restriction has been found to cause neuronal degeneration. The aim of this study was to investigate the vulnerability of motor axons of a presymptomatic late-onset, fast-progression SOD1(G127x) mouse model of amyotrophic lateral sclerosis to long-lasting, high-frequency repetitive activity. Tibial nerves were stimulated at ankle in 7 to 8-month-old SOD1(G127X) mice when they were clinically indistinguishable from wild-type (WT) mice. The evoked compound muscle action potentials and ascending compound nerve action potentials were recorded from plantar muscles and from the sciatic nerve, respectively. Repetitive stimulation (RS) was carried out in interrupted trains of 200-Hz for 3 h. During the stimulation-sequence there was progressive conduction failure in WT and, to a lesser extent, in the SOD1(G127x). By contrast, 3 days after RS the electrophysiological responses remained reduced in the SOD1(G127x) but recovered completely in WT. Additionally, morphological studies showed Wallerian degeneration in the disease model. Nerve excitability testing by "threshold-tracking" showed that axons recovering from RS had changes in excitability suggestive of membrane hyperpolarization, which was smaller in the SOD1(G127x) than in WT. Our data provide proof-of-principle that SOD1(G127x) axons are less resistant to activity-induced changes in ion-concentrations. It is possible that in SOD1(G127x) there is inadequate energy-dependent Na+/K+ pumping, which may lead to a lethal Na+ overload. (C) 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
  •  
2.
  • Janssen, Xander J. A., et al. (författare)
  • Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography
  • 2012
  • Ingår i: Nanotechnology. - : IOP Publishing: Hybrid Open Access. - 0957-4484 .- 1361-6528. ; 23:47
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, the concept of nanopore sensing has matured from a proof-of-principle method to a widespread, versatile technique for the study of biomolecular properties and interactions. While traditional nanopore devices based on a nanopore in a single layer membrane supported on a silicon chip can be rapidly fabricated using standard microfabrication methods, chips with additional insulating layers beyond the membrane region can provide significantly lower noise levels, but at the expense of requiring more costly and time-consuming fabrication steps. Here we present a novel fabrication protocol that overcomes this issue by enabling rapid and reproducible manufacturing of low-noise membranes for nanopore experiments. The fabrication protocol, termed trans-chip illumination lithography, is based on illuminating a membrane-containing wafer from its backside such that a photoresist (applied on the wafers top side) is exposed exclusively in the membrane regions. Trans-chip illumination lithography permits the local modification of membrane regions and hence the fabrication of nanopore chips containing locally patterned insulating layers. This is achieved while maintaining a well-defined area containing a single thin membrane for nanopore drilling. The trans-chip illumination lithography method achieves this without relying on separate masks, thereby eliminating time-consuming alignment steps as well as the need for a mask aligner. Using the presented approach, we demonstrate rapid and reproducible fabrication of nanopore chips that contain small (12 mu m x 12 mu m) free-standing silicon nitride membranes surrounded by insulating layers. The electrical noise characteristics of these nanopore chips are shown to be superior to those of simpler designs without insulating layers and comparable in quality to more complex designs that are more challenging to fabricate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy