SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Camps G.) srt2:(2010-2014)"

Sökning: WFRF:(Camps G.) > (2010-2014)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Guillén, Yolanda, et al. (författare)
  • Genomics of ecological adaptation in cactophilic Drosophila.
  • 2014
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 7:1, s. 349-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Cactophilic Drosophila species provide a valuable model to study gene-environment interactions and ecological adaptation. Drosophila buzzatii and Drosophila mojavensis are two cactophilic species that belong to the repleta group, but have very different geographical distributions and primary host plants. To investigate the genomic basis of ecological adaptation, we sequenced the genome and developmental transcriptome of D. buzzatii and compared its gene content with that of D. mojavensis and two other noncactophilic Drosophila species in the same subgenus. The newly sequenced D. buzzatii genome (161.5 Mb) comprises 826 scaffolds (>3 kb) and contains 13,657 annotated protein-coding genes. Using RNA sequencing data of five life-stages we found expression of 15,026 genes, 80% protein-coding genes, and 20% noncoding RNA genes. In total, we detected 1,294 genes putatively under positive selection. Interestingly, among genes under positive selection in the D. mojavensis lineage, there is an excess of genes involved in metabolism of heterocyclic compounds that are abundant in Stenocereus cacti and toxic to nonresident Drosophila species. We found 117 orphan genes in the shared D. buzzatii-D. mojavensis lineage. In addition, gene duplication analysis identified lineage-specific expanded families with functional annotations associated with proteolysis, zinc ion binding, chitin binding, sensory perception, ethanol tolerance, immunity, physiology, and reproduction. In summary, we identified genetic signatures of adaptation in the shared D. buzzatii-D. mojavensis lineage, and in the two separate D. buzzatii and D. mojavensis lineages. Many of the novel lineage-specific genomic features are promising candidates for explaining the adaptation of these species to their distinct ecological niches.
  •  
2.
  • Diaz-Gallo, L. M., et al. (författare)
  • Analysis of the influence of PTPN22 gene polymorphisms in systemic sclerosis
  • 2011
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 70:3, s. 454-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Two functional single nucleotide polymorphisms (SNP) in the PTPN22 gene (rs24746601 and rs33996649) have been associated with autoimmunity. The aim of this study was to investigate the role of the R263Q SNP for the first time and to re-evaluate the role of the R620W SNP in the genetic predisposition to systemic sclerosis (SSc) susceptibility and clinical phenotypes. Methods 3422 SSc patients (2020 with limited cutaneous SSc and 1208 with diffuse cutaneous SSc) and 3638 healthy controls of Caucasian ancestry from an initial case--control set of Spain and seven additional independent replication cohorts were included in our study. Both rs33996649 and rs2476601 PTPN22 polymorphisms were genotyped by TaqMan allelic discrimination assay. A meta-analysis was performed to test the overall effect of these PTPN22 polymorphisms in SSc. Results The meta-analysis revealed evidence of association of the rs2476601 T allele with SSc susceptibility (p(FDRcorrected) = 0.03 pooled, OR 1.15, 95% CI 1.03 to 1.28). In addition, the rs2476601 T allele was significantly associated with anticentromere-positive status (p(FDRcorrected) = 0.02 pooled, OR 1.22, 95% CI 1.05 to 1.42). Although the rs33996649 A allele was significantly associated with SSc in the Spanish population (p(FDRcorrected) = 0.04, OR 0.58, 95% CI 0.36 to 0.92), this association was not confirmed in the meta-analysis (p = 0.36 pooled, OR 0.89, 95% CI 0.72 to 1.1). Conclusion The study suggests that the PTPN22 R620W polymorphism influences SSc genetic susceptibility but the novel R263Q genetic variant does not. These data strengthen evidence that the R620W mutation is a common risk factor in autoimmune diseases.
  •  
3.
  •  
4.
  •  
5.
  • Rueda, B., et al. (författare)
  • BANK1 functional variants are associated with susceptibility to diffuse systemic sclerosis in Caucasians
  • 2010
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 69:4, s. 700-705
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To investigate the possible association of the BANK1 gene with genetic susceptibility to systemic sclerosis (SSc) and its subphenotypes. Methods A large multicentre case-control association study including 2380 patients with SSc and 3270 healthy controls from six independent case-control sets of Caucasian ancestry ( American, Spanish, Dutch, German, Swedish and Italian) was conducted. Three putative functional BANK1 polymorphisms (rs17266594 T/C, rs10516487 G/A, rs3733197 G/A) were selected as genetic markers and genotyped by Taqman 5' allelic discrimination assay. Results A significant association of the rs10516487 G and rs17266594 T alleles with SSc susceptibility was observed (pooled OR=1.12, 95% CI 1.03 to 1.22; p=0.01 and pooled OR=1.14, 95% CI 1.05 to 1.25; p=0.003, respectively), whereas the rs3733197 genetic variant showed no statistically significant deviation. Stratification for cutaneous SSc phenotype showed that the BANK1 rs10516487 G, rs17266594 T and rs3733197 G alleles were strongly associated with susceptibility to diffuse SSc (dcSSc) (pooled OR=1.20, 95% CI 1.05 to 1.37, p=0.005; pooled OR=1.23, 95% CI 1.08 to 1.41, p=0.001; pooled OR=1.15, 95% CI 1.02 to 1.31, p=0.02, respectively). Similarly, stratification for specific SSc autoantibodies showed that the association of BANK1 rs10516487, rs17266594 and rs3733197 polymorphisms was restricted to the subgroup of patients carrying anti-topoisomerase I antibodies (pooled OR=1.20, 95% CI 1.02 to 1.41, p=0.03; pooled OR=1.24, 95% CI 1.05 to 1.46, p=0.01; pooled OR=1.26, 95% CI 1.07 to 1.47, p=0.004, respectively). Conclusion The results suggest that the BANK1 gene confers susceptibility to SSc in general, and specifically to the dcSSc and anti-topoisomerase I antibody subsets.
  •  
6.
  • van Montfoort, Nadine, et al. (författare)
  • Circulating specific antibodies enhance systemic cross-priming by delivery of complexed antigen to dendritic cells in vivo
  • 2012
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 42:3, s. 598-606
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing evidence suggests that antibodies can have stimulatory effects on T-cell immunity. However, the contribution of circulating antigen-specific antibodies on MHC class I cross-priming in vivo has not been conclusively established. Here, we defined the role of circulating antibodies in cross-presentation of antigen to CD8+ T cells. Mice with hapten-specific circulating antibodies, but naϊve for the T-cell antigen, were infused with haptenated antigen and CD8+ T-cell induction was measured. Mice with circulating hapten-specific antibodies showed significantly enhanced cross-presentation of the injected antigen compared with mice that lacked these antibodies. The enhanced cross-presentation in mice with circulating antigen-specific antibodies was associated with improved antigen capture by APCs. Importantly, CD11c+ APCs were responsible for the enhanced and sustained cross-presentation, although CD11c− APCs had initially captured a significant amount of the injected antigen. Thus, in vivo formation of antigen-antibody immune complexes improves MHC class I cross-presentation, and CD8+ T-cell activation, demonstrating that humoral immunity can aid the initiation of systemic cellular immunity. These findings have important implications for the understanding of the action of therapeutic antibodies against tumor-associated antigens intensively used in the clinic nowadays.
  •  
7.
  • van Montfoort, Nadine, et al. (författare)
  • Fcγ receptor IIb strongly regulates Fcγ receptor-facilitated T cell activation by dendritic cells
  • 2012
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 189:1, s. 92-101
  • Tidskriftsartikel (refereegranskat)abstract
    • FcγR ligation by Ag-Ab immune complexes (IC) not only mediates effective Ag uptake, but also strongly initiates dendritic cell (DC) maturation, a requirement for effective T cell activation. Besides the activating FcγRI, FcγRIII, and FcγRIV, the inhibitory FcγRIIb is expressed on DCs. It is unclear how the ratio between signals from the activating FcγR and the inhibitory FcγRIIb determines the outcome of FcγR ligation on DCs. By microarray analysis, we compared the transcriptomes of steady state and IC-activated bone marrow-derived wild-type (WT) DCs expressing all FcγR or DCs expressing only activating FcγR (FcγRIIb knockout [KO]) or only the inhibitory FcγRIIb (FcR γ-chain KO). In WT DCs, we observed a gene expression profile associated with effective T cell activation, which was absent in FcR γ-chain KO, but strikingly more pronounced in FcγRIIb KO bone marrow-derived DCs. These microarray results, confirmed at the protein level for many cytokines and other immunological relevant genes, demonstrate that the transcriptome of IC-activated DCs is dependent on the presence of the activating FcγR and that the modulation of the expression of the majority of the genes was strongly regulated by FcγRIIb. Our data suggest that FcγRIIb-deficient DCs have an improved capacity to activate naive T lymphocytes. This was confirmed by their enhanced FcγR-dependent Ag presentation and in vivo induction of CD8(+) T cell expansion compared with WT DCs. Our findings underscore the potency of FcγR ligation on DCs for the effective induction of T cell immunity by ICs and the strong regulatory role of FcγRIIb.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy