SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Canfield Donald E.) srt2:(2015-2019)"

Sökning: WFRF:(Canfield Donald E.) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Canfield, Donald E., et al. (författare)
  • A Mesoproterozoic iron formation
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 115:17, s. 3895-3904
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a 1,400 million-year old (Ma) iron formation (IF) from the Xiamaling Formation of the North China Craton. We estimate this IF to have contained at least 520 gigatons of authigenic Fe, comparable in size to many IFs of the Paleoproterozoic Era (2,500–1,600 Ma). Therefore, substantial IFs formed in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent. The Xiamaling IF is of exceptionally low thermal maturity, allowing the preservation of organic biomarkers and an unprecedented view of iron-cycle dynamics during IF emplacement. We identify tetramethyl aryl isoprenoid (TMAI) biomarkers linked to anoxygenic photosynthetic bacteria and thus phototrophic Fe oxidation. Although we cannot rule out other pathways of Fe oxidation, iron and organic matter likely deposited to the sediment in a ratio similar to that expected for anoxygenic photosynthesis. Fe reduction was likely a dominant and efficient pathway of organic matter mineralization, as indicated by organic matter maturation by Rock Eval pyrolysis combined with carbon isotope analyses: Indeed, Fe reduction was seemingly as efficient as oxic respiration. Overall, this Mesoproterozoic-aged IF shows many similarities to Archean-aged (>2,500 Ma) banded IFs (BIFs), but with an exceptional state of preservation, allowing an unprecedented exploration of Fe-cycle dynamics in IF deposition.
  •  
2.
  • El Albani, Abder, et al. (författare)
  • Organism motility in an oxygenated shallow-marine environment 2.1 billion years ago
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 116:9, s. 3431-3436
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2.1 billion-year-old sedimentary strata contain exquisitely preserved fossils that provide an ecologic snapshot of the biota inhabiting an oxygenated shallow-marine environment. Most striking are the pyritized string-shaped structures, which suggest that the producer have been a multicellular or syncytial organism able to migrate laterally and vertically to reach for food resources. A modern analogue is the aggregation of amoeboid cells into a migratory slug phase in modern cellular slime molds during time of food starvation. While it remains uncertain whether the amoeboidlike organisms represent a failed experiment or a prelude to subsequent evolutionary innovations, they add to the growing record of comparatively complex life forms that existed more than a billion years before animals emerged in the late Neoproterozoic.Evidence for macroscopic life in the Paleoproterozoic Era comes from 1.8 billion-year-old (Ga) compression fossils [Han TM, Runnegar B (1992) Science 257:232–235; Knoll et al. (2006) Philos Trans R Soc Lond B 361:1023–1038], Stirling biota [Bengtson S et al. (2007) Paleobiology 33:351–381], and large colonial organisms exhibiting signs of coordinated growth from the 2.1-Ga Francevillian series, Gabon. Here we report on pyritized string-shaped structures from the Francevillian Basin. Combined microscopic, microtomographic, geochemical, and sedimentologic analyses provide evidence for biogenicity, and syngenicity and suggest that the structures underwent fossilization during early diagenesis close to the sediment–water interface. The string-shaped structures are up to 6 mm across and extend up to 170 mm through the strata. Morphological and 3D tomographic reconstructions suggest that the producer may have been a multicellular or syncytial organism able to migrate laterally and vertically to reach food resources. A possible modern analog is the aggregation of amoeboid cells into a migratory slug phase in cellular slime molds at times of starvation. This unique ecologic window established in an oxygenated, shallow-marine environment represents an exceptional record of the biosphere following the crucial changes that occurred in the atmosphere and ocean in the aftermath of the great oxidation event (GOE).
  •  
3.
  • Hammarlund, Emma U., et al. (författare)
  • Early Cambrian oxygen minimum zone-like conditions at Chengjiang
  • 2017
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X. ; 475, s. 160-168
  • Tidskriftsartikel (refereegranskat)abstract
    • The early Cambrian succession at Chengjiang contains the most diverse Cambrian fossil assemblage yet described, and contributes significantly to our understanding of the diversification of metazoans in the Cambrian “explosion”. The Cambrian Period occupies a transitional episode of global ocean chemistry, following the oxygenation of the surface ocean and of shallow marine environments during the Ediacaran Period, but prior to the establishment of a predominantly oxygenated deep ocean in the mid-Paleozoic. Despite recent attention, a detailed understanding of the chemical conditions that prevailed in early Cambrian marine settings and the relationship of those conditions to early metazoan ecosystems is still emerging. Here, we report multi-proxy geochemical data from two drill cores through the early Cambrian (Series 2) Yu'anshan Formation of Yunnan, China. Results reveal dynamic water-column chemistry within the succession, which progressively shifted from euxinic to oxic conditions during deposition of the Yu'anshan Formation. The Chengjiang biota occurs in strata that appear to have been deposited under an oxygen-depleted water column that may have supported denitrification, as in modern oxygen-minimum zones. The oxygenated benthic environments in which the Chengjiang biota thrived were proximal to, but sharply separated from, the open ocean by a persistent anoxic water mass that occupied a portion of the outer shelf. Oxygen depletion in the lower water column developed dynamically in response to nutrient availability and possibly at lower thresholds of productivity due to lower atmospheric oxygen concentrations in Cambrian. These findings suggest that the frequent development of oxygen-limiting conditions in continental margin settings provided an environmental barrier that may have affected biogeographic, ecological and evolutionary development of early metazoan communities.
  •  
4.
  • Hammarlund, Emma U., et al. (författare)
  • The Sirius Passet Lagerstätte of North Greenland—A geochemical window on early Cambrian low-oxygen environments and ecosystems
  • 2019
  • Ingår i: Geobiology. - : Wiley. - 1472-4677. ; 17:1, s. 12-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The early Cambrian Sirius Passet fauna of northernmost Greenland (Cambrian Series 2, Stage 3) contains exceptionally preserved soft tissues that provide an important window to early animal evolution, while the surrounding sediment holds critical data on the palaeodepositional water-column chemistry. The present study combines palaeontological data with a multiproxy geochemical approach based on samples collected in situ at high stratigraphic resolution from Sirius Passet. After careful consideration of chemical alterations during burial, our results demonstrate that fossil preservation and biodiversity show significant correlation with iron enrichments (FeHR/FeT), trace metal behaviour (V/Al), and changes in nitrogen cycling (δ15N). These data, together with Mo/Al and the preservation of organic carbon (TOC), are consistent with a water column that was transiently low in oxygen concentration, or even intermittently anoxic. When compared with the biogeochemical characteristics of modern oxygen minimum zones (OMZs), geochemical and palaeontological data collectively suggest that oxygen concentrations as low as 0.2–0.4 ml/L restricted bioturbation but not the development of a largely nektobenthic community of predators and scavengers. We envisage for the Sirius Passet biota a depositional setting where anoxic water column conditions developed and passed over the depositional site, possibly in association with sea-level change, and where this early Cambrian biota was established in conditions with very low oxygen.
  •  
5.
  • Sallstedt, Therese, et al. (författare)
  • Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India.
  • 2018
  • Ingår i: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 16, s. 139-159
  • Tidskriftsartikel (refereegranskat)abstract
    • Fossil microbiotas are rare in the early rock record, limiting the type of ecological information extractable from ancient microbialites. In the absence of body fossils, emphasis may instead be given to microbially derived features, such as microbialite growth patterns, microbial mat morphologies, and the presence of fossilized gas bubbles in lithified mats. The metabolic affinity of micro-organisms associated with phosphatization may reveal important clues to the nature and accretion of apatite-rich microbialites. Stromatolites from the 1.6 Ga Chitrakoot Formation (Semri Group, Vindhyan Supergroup) in central India contain abundant fossilized bubbles interspersed within fine-grained in situ-precipitated apatite mats with average δ13Corg indicative of carbon fixation by the Calvin cycle. In addition, the mats hold a synsedimentary fossil biota characteristic of cyanobacterial and rhodophyte morphotypes. Phosphatic oncoid cone-like stromatolites from the Paleoproterozoic Aravalli Supergroup (Jhamarkotra Formation) comprise abundant mineralized bubbles enmeshed within tufted filamentous mat fabrics. Construction of these tufts is considered to be the result of filamentous bacteria gliding within microbial mats, and as fossilized bubbles within pristine mat laminae can be used as a proxy for oxygenic phototrophy, this provides a strong indication for cyanobacterial activity in the Aravalli mounds. We suggest that the activity of oxygenic phototrophs may have been significant for the formation of apatite in both Vindhyan and Aravalli stromatolites, mainly by concentrating phosphate and creating steep diurnal redox gradients within mat pore spaces, promoting apatite precipitation. The presence in the Indian stromatolites of alternating apatite-carbonate lamina may result from local variations in pH and oxygen levels caused by photosynthesis–respiration in the mats. Altogether, this study presents new insights into the ecology of ancient phosphatic stromatolites and warrants further exploration into the role of oxygen-producing biotas in the formation of Paleoproterozoic shallow-basin phosphorites.
  •  
6.
  • Zhang, Shuichang, et al. (författare)
  • Paleoenvironmental proxies and what the Xiamaling Formation tells us about the mid-Proterozoic ocean
  • 2019
  • Ingår i: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 17:3, s. 225-246
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mesoproterozoic Era (1,600–1,000 million years ago, Ma) geochemical record is sparse, but, nevertheless, critical in untangling relationships between the evolution of eukaryotic ecosystems and the evolution of Earth-surface chemistry. The ca. 1,400 Ma Xiamaling Formation has experienced only very low-grade thermal maturity and has emerged as a promising geochemical archive informing on the interplay between climate, ecosystem organization, and the chemistry of the atmosphere and oceans. Indeed, the geochemical record of portions of the Xiamaling Formation has been used to place minimum constraints on concentrations of atmospheric oxygen as well as possible influences of climate and climate change on water chemistry and sedimentation dynamics. A recent study has argued, however, that some portions of the Xiamaling Formation deposited in a highly restricted environment with only limited value as a geochemical archive. In this contribution, we fully explore these arguments as well as the underlying assumptions surrounding the use of many proxies used for paleo-environmental reconstructions. In doing so, we pay particular attention to deep-water oxygen-minimum zone environments and show that these generate unique geochemical signals that have been underappreciated. These signals, however, are compatible with the geochemical record of those parts of the Xiamaling Formation interpreted as most restricted. Overall, we conclude that the Xiamaling Formation was most likely open to the global ocean throughout its depositional history. More broadly, we show that proper paleo-environmental reconstructions require an understanding of the biogeochemical signals generated in all relevant modern analogue depositional environments. We also evaluate new data on the δ 98 Mo of Xiamaling Formation shales, revealing possible unknown pathways of molybdenum sequestration into sediments and concluding, finally, that seawater at that time likely had a δ 98 Mo value of about 1.1‰.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy