SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Carbone F.) srt2:(2015-2019)"

Search: WFRF:(Carbone F.) > (2015-2019)

  • Result 1-50 of 50
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aad, G., et al. (author)
  • 2015
  • In: Journal of High Energy Physics. - : Springer. - 1029-8479 .- 1126-6708. ; :12
  • Journal article (peer-reviewed)
  •  
2.
  •  
3.
  • Aad, G., et al. (author)
  • 2016
  • In: Journal of High Energy Physics. - : Springer. - 1029-8479 .- 1126-6708. ; :1
  • Journal article (peer-reviewed)
  •  
4.
  • Aad, G., et al. (author)
  • 2015
  • In: Physical Review D. Particles and fields. - : American Physical Society. - 0556-2821 .- 1089-4918. ; 92:9
  • Journal article (peer-reviewed)
  •  
5.
  • Aad, G., et al. (author)
  • 2015
  • In: Physical Review D. Particles and fields. - : American Physics Society. - 0556-2821 .- 1089-4918. ; 92:11
  • Journal article (peer-reviewed)
  •  
6.
  • Aad, G., et al. (author)
  • 2016
  • In: Physical Review D. Particles and fields. - : American Physical Society. - 0556-2821 .- 1089-4918. ; 93:1
  • Journal article (peer-reviewed)
  •  
7.
  • Barnett, R., et al. (author)
  • Euclid preparation V. Predicted yield of redshift 7 < z < 9 quasars from the wide survey
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 631
  • Journal article (peer-reviewed)abstract
    • We provide predictions of the yield of 7 < z < 9 quasars from the Euclid wide survey, updating the calculation presented in the Euclid Red Book in several ways. We account for revisions to the Euclid near-infrared filter wavelengths; we adopt steeper rates of decline of the quasar luminosity function (QLF; Phi) with redshift, Phi proportional to 10(k(z-6)), k = 0:72, and a further steeper rate of decline, k = 0:92; we use better models of the contaminating populations (MLT dwarfs and compact early-type galaxies); and we make use of an improved Bayesian selection method, compared to the colour cuts used for the Red Book calculation, allowing the identification of fainter quasars, down to J(AB) similar to 23. Quasars at z > 8 may be selected from Euclid OYJH photometry alone, but selection over the redshift interval 7 < z < 8 is greatly improved by the addition of z-band data from, e.g., Pan-STARRS and LSST. We calculate predicted quasar yields for the assumed values of the rate of decline of the QLF beyond z = 6. If the decline of the QLF accelerates beyond z = 6, with k = 0.92, Euclid should nevertheless find over 100 quasars with 7.0 < z < 7.5, and similar to 25 quasars beyond the current record of z = 7.5, including similar to 8 beyond z = 8.0. The first Euclid quasars at z > 7.5 should be found in the DR1 data release, expected in 2024. It will be possible to determine the bright-end slope of the QLF, 7 < z < 8, M-1450 < 25, using 8m class telescopes to confirm candidates, but follow-up with JWST or E-ELT will be required to measure the faint-end slope. Contamination of the candidate lists is predicted to be modest even at J(AB) similar to 23. The precision with which k can be determined over 7 < z < 8 depends on the value of k, but assuming k = 0.72 it can be measured to a 1 sigma uncertainty of 0.07.
  •  
8.
  • Amendola, L., et al. (author)
  • Cosmology and fundamental physics with the Euclid satellite
  • 2018
  • In: Living Reviews in Relativity. - : Springer. - 1433-8351 .- 2367-3613. ; 21:1
  • Journal article (peer-reviewed)abstract
    • Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015–2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid’s Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.
  •  
9.
  • Sprovieri, F., et al. (author)
  • Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network
  • 2016
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:18, s. 11915-11935
  • Journal article (peer-reviewed)abstract
    • Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.
  •  
10.
  • Heald, G. H., et al. (author)
  • The LOFAR Multifrequency Snapshot Sky Survey (MSSS) : I. Survey description and first results
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 582, s. 1-22
  • Journal article (peer-reviewed)abstract
    • We present the Multifrequency Snapshot Sky Survey (MSSS), the first northern-sky Low Frequency Array (LOFAR) imaging survey. In this introductory paper, we first describe in detail the motivation and design of the survey. Compared to previous radio surveys, MSSS is exceptional due to its intrinsic multifrequency nature providing information about the spectral properties of the detected sources over more than two octaves (from 30 to 160 MHz). The broadband frequency coverage, together with the fast survey speed generated by LOFAR’s multibeaming capabilities, make MSSS the first survey of the sort anticipated to be carried out with the forthcoming Square Kilometre Array (SKA). Two of the sixteen frequency bands included in the survey were chosen to exactly overlap the frequency coverage of large-area Very Large Array (VLA) and Giant Metrewave Radio Telescope (GMRT) surveys at 74 MHz and 151 MHz respectively. The survey performance is illustrated within the MSSS Verification Field (MVF), a region of 100 square degrees centered at (α,δ)J2000 = (15h,69°). The MSSS results from the MVF are compared with previous radio survey catalogs. We assess the flux and astrometric uncertainties in the catalog, as well as the completeness and reliability considering our source finding strategy. We determine the 90% completeness levels within the MVF to be 100 mJy at 135 MHz with 108″ resolution, and 550 mJy at 50 MHz with 166″ resolution. Images and catalogs for the full survey, expected to contain 150 000–200 000 sources, will be released to a public web server. We outline the plans for the ongoing production of the final survey products, and the ultimate public release of images and source catalogs.
  •  
11.
  •  
12.
  • Adriani, O., et al. (author)
  • Pamela's measurements of magnetospheric effects on high-energy solar particles
  • 2015
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 801:1
  • Journal article (peer-reviewed)abstract
    • The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections, is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument enables unique observations of SEPs including the composition and angular distribution of the particles about the magnetic field, i.e., pitch angle distribution, over a broad energy range (>80 MeV)-bridging a critical gap between space-based and ground-based measurements. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two distinct pitch angle distributions: a low-energy population that extends to 90 degrees and a population that is beamed at high energies (>1 GeV), consistent with neutron monitor measurements. To explain a low-energy SEP population that exhibits significant scattering or redistribution accompanied by a high-energy population that reaches the Earth relatively unaffected by dispersive transport effects, we postulate that the scattering or redistribution takes place locally. We believe that these are the first comprehensive measurements of the effects of solar energetic particle transport in the Earth's magnetosheath.
  •  
13.
  • Alberts, R, et al. (author)
  • Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis
  • 2018
  • In: Gut. - : BMJ. - 1468-3288 .- 0017-5749. ; 67:8, s. 1517-1524
  • Journal article (peer-reviewed)abstract
    • Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile duct disease of largely unknown aetiology often leading to liver transplantation or death. Little is known about the genetic contribution to the severity and progression of PSC. The aim of this study is to identify genetic variants associated with PSC disease progression and development of complications.DesignWe collected standardised PSC subphenotypes in a large cohort of 3402 patients with PSC. After quality control, we combined 130 422 single nucleotide polymorphisms of all patients—obtained using the Illumina immunochip—with their disease subphenotypes. Using logistic regression and Cox proportional hazards models, we identified genetic variants associated with binary and time-to-event PSC subphenotypes.ResultsWe identified genetic variant rs853974 to be associated with liver transplant-free survival (p=6.07×10–9). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5% to 59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 72.8% (95% CI 69.6% to 75.7%) for GG carriers at 10 years after PSC diagnosis. For the candidate gene in the region, RSPO3, we demonstrated expression in key liver-resident effector cells, such as human and murine cholangiocytes and human hepatic stellate cells.ConclusionWe present a large international PSC cohort, and report genetic loci associated with PSC disease progression. For liver transplant-free survival, we identified a genome-wide significant signal and demonstrated expression of the candidate gene RSPO3 in key liver-resident effector cells. This warrants further assessments of the role of this potential key PSC modifier gene.
  •  
14.
  • Bruno, A., et al. (author)
  • PAMELA's measurements of geomagnetic cutoff variations during solar energetic particle events
  • 2015
  • In: Proceedings of Science. - : Proceedings of Science (PoS).
  • Conference paper (peer-reviewed)abstract
    • Data from the PAMELA satellite experiment were used to measure the geomagnetic cutoff for high-energy ( 80 MeV) protons during the solar particle events on 2006 December 13 and 14. The variations of the cutoff latitude as a function of rigidity were studied on relatively short timescales, corresponding to single spacecraft orbits (about 94 minutes). Estimated cutoff values were cross-checked with those obtained by means of a trajectory tracing approach based on dynamical empirical modeling of the Earth's magnetosphere. We find significant variations in the cutoff latitude, with a maximum suppression of about 6 deg for 80 MeV protons during the main phase of the storm. The observed reduction in the geomagnetic shielding and its temporal evolution were compared with the changes in the magnetosphere configuration, investigating the role of IMF, solar wind and geomagnetic (Kp, Dst and Sym-H indexes) variables and their correlation with PAMELA cutoff results.
  •  
15.
  • Bruno, A., et al. (author)
  • PAMELA's measurements of geomagnetically trapped and albedo protons
  • 2015
  • In: Proceedings of Science. - : Proceedings of Science (PoS).
  • Conference paper (peer-reviewed)abstract
    • Data from the PAMELA satellite experiment were used to perform a detailed measurement of under-cutoff protons at low Earth orbits. On the basis of a trajectory tracing approach using a realistic description of the magnetosphere, protons were classified into geomagnetically trapped and re-entrant albedo. The former include stably-trapped protons in the South Atlantic Anomaly, which were analyzed in the framework of the adiabatic theory, investigating energy spectra, spatial and angular distributions; results were compared with the predictions of the AP8 and the PSB97 empirical trapped models. The albedo protons were classified into quasi-trapped, concentrating in the magnetic equatorial region, and un-trapped, spreading over all latitudes and including both short-lived (precipitating) and long-lived (pseudo-trapped) components. Features of the penumbra region around the geomagnetic cutoff were investigated as well. PAMELA observations significantly improve the characterization of the high energy proton populations in near Earth orbits. The.
  •  
16.
  • Bruno, A., et al. (author)
  • Solar energetic particle events : Trajectory analysis and flux reconstruction with PAMELA
  • 2015
  • In: Proceedings of Science. - : Proceedings of science.
  • Conference paper (peer-reviewed)abstract
    • The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Ground Level Enhancement (GLE) data by the worldwide network of neutron monitors. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies. This work reports the analysis methods developed to estimate the SEP energy spectra as a function of the particle pitch-angle with respect to the Interplanetary Magnetic Field (IMF) direction. The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earth's magnetosphere. As case study, the results for the May 17, 2012 event are presented.
  •  
17.
  • Buitink, S., et al. (author)
  • A large light-mass component of cosmic rays at 1017–1017.5 electronvolts from radio observations
  • 2016
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 531:7592, s. 70-73
  • Journal article (peer-reviewed)abstract
    • Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 1017–1018 electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal1 comes from accelerators capable of producing cosmic rays of these energies2. Cosmic rays initiate air showers—cascades of secondary particles in the atmosphere—and their masses can be inferred from measurements of the atmospheric depth of the shower maximum3 (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground4. Current measurements5 have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays6, 7, 8 is a rapidly developing technique9 for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front6, 12. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 1017–1017.5 electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 1017.5 electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 1017–1017.5 electronvolt range.
  •  
18.
  • Islam, Fhokrul, et al. (author)
  • Systematics of electronic and magnetic properties in the transition metal doped Sb2Te3 quantum anomalous Hall platform
  • 2018
  • In: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 97:15
  • Journal article (peer-reviewed)abstract
    • The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here, we report on a detailed and systematic investigation of transition metal (TM) doped Sb2Te3. By combining density functional theory calculations with complementary experimental techniques, i.e., scanning tunneling microscopy, resonant photoemission, and x-raymagnetic circular dichroism, we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM doped topological insulators. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V-and Fe-doped Sb2Te3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity dependent and can vary from in plane to out of plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM doped Sb2Te3 in the ferromagnetic state.
  •  
19.
  •  
20.
  • Karelin, A. V., et al. (author)
  • Measurement of electron-positron spectrum in high-energy cosmic rays in the PAMELA experiment
  • 2015
  • In: 24TH EUROPEAN COSMIC RAY SYMPOSIUM (ECRS). - : IOP Publishing.
  • Conference paper (peer-reviewed)abstract
    • At present the existing data on the cosmic ray electron energy spectra in the high energy range are fragmented, and the situation is exacerbated by their small number. In the satellite PAMELA experiment measurements at high energies are carried out by the calorimeter. The experimental data accumulated for more than 8 years of measurements, with the information of the calorimeter, the neutron detector and the scintillation counters made it possible to obtain the total spectrum of high-energy electrons and positrons in energy range 0.3-3 TeV.
  •  
21.
  • Karelin, A. V., et al. (author)
  • Measurement of the large-scale anisotropy of cosmic rays in the PAMELA experiment
  • 2015
  • In: JETP Letters. - 0021-3640 .- 1090-6487. ; 101:5, s. 295-298
  • Journal article (peer-reviewed)abstract
    • Large-scale anisotropy or so-called sidereal-diurnal wave has been detected in the PAMELA satellite experiment in the time interval of 2006–2014. The magnitude of anisotropy has been measured simultaneously for the Southern and Northern Hemispheres in the equatorial coordinate system. The results confirm the data of ground-based experiments.
  •  
22.
  • Karelin, A. V., et al. (author)
  • Measuring the spectra of high-energy cosmic-ray particles in the PAMELA experiment
  • 2015
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 79:3, s. 289-293
  • Journal article (peer-reviewed)abstract
    • The available data on the energy spectra of electrons, protons, and helium nuclei in the high-energy region are fragmentary, a situation made worse by their scarcity. Due to limitations imposed on the use of the magnetic spectrometer in the PAMELA satellite experiment, the calorimeter must be used for measurements performed in the high-energy region. The processing of experimental data accumulated in more than eight years of measurements with the calorimeter, neutron detector, and scintillation counters allows the spectra of high-energy particles to be obtained, greatly expanding our understanding of the nature of primary cosmic rays.
  •  
23.
  • Kiendler-Scharr, A., et al. (author)
  • Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol
  • 2016
  • In: Geophysical Research Letters. - 0094-8276. ; 43:14, s. 7735-7744
  • Journal article (peer-reviewed)abstract
    • In the atmosphere nighttime removal of volatile organic compounds is initiated to a large extent by reaction with the nitrate radical (NO3) forming organic nitrates which partition between gas and particulate phase. Here we show based on particle phase measurements performed at a suburban site in the Netherlands that organic nitrates contribute substantially to particulate nitrate and organic mass. Comparisons with a chemistry transport model indicate that most of the measured particulate organic nitrates are formed by NO3 oxidation. Using aerosol composition data from three intensive observation periods at numerous measurement sites across Europe, we conclude that organic nitrates are a considerable fraction of fine particulate matter (PM1) at the continental scale. Organic nitrates represent 34% to 44% of measured submicron aerosol nitrate and are found at all urban and rural sites, implying a substantial potential of PM reduction by NOx emission control.
  •  
24.
  • Koldobskiy, S. A., et al. (author)
  • Deuteron spectrum measurements under radiation belt with PAMELA instrument
  • 2016
  • In: Nuclear and Particle Physics Proceedings. - : Elsevier. - 2405-6014. ; 273-275, s. 2345-2347
  • Journal article (peer-reviewed)abstract
    • In this work the results of data analysis of the deuteron albedo radiation obtained in the PAMELA experiment are presented. PAMELA is an international space experiment carried out on board of the satellite Resurs DK-1. The high precision detectors allow to register and identify cosmic ray particles in a wide energy range. The albedo deuteron spectrum in the energy range 70 - 600 MeV/nucleon has been measured.
  •  
25.
  • Koldobskiy, S., et al. (author)
  • Measuring the albedo deuteron flux in the PAMELA satellite experiment
  • 2015
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 79:3, s. 294-297
  • Journal article (peer-reviewed)abstract
    • The results of measuring albedo deuteron fluxes in the vicinity of the Earth are presented. The data were obtained in the PAMELA experiment conducted aboard the Resurs DK-1 artificial Earth satellite. High-precision detectors of the instrument setup allow us to identify albedo deuterons and measure their spectra in the energy interval from 70 to 600 MeV/nucleon at altitudes of 350–600 km for different geomagnetic latitudes.
  •  
26.
  • Mikhailov, V. V., et al. (author)
  • Searching for anisotropy of positrons and electrons in the PAMELA experiment
  • 2015
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 79:3, s. 298-301
  • Journal article (peer-reviewed)abstract
    • The PAMELA experiment has been under way aboard the Resurs DK-1 satellite since June 2006. The results have revealed an increase in the ratio of the positron intensity to the total electron and positron intensity at energies in excess of 10 GeV. This increase suggests an additional source of cosmic rays that is associated with either some astrophysical objects (e.g., pulsars) or the probable annihilation of particles of dark matter. Local positron sources can produce notable anisotropy in their flux. The results from the search for anisotropy of positrons and electrons in the events detected by the PAMELA experiment in the 2006–2013 timeframe are described in detail in this work.
  •  
27.
  • Moldón, J., et al. (author)
  • The LOFAR long baseline snapshot calibrator survey
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574
  • Journal article (peer-reviewed)abstract
    • Aims. An efficient means of locating calibrator sources for international LOw Frequency ARray (LOFAR) is developed and used to determine the average density of usable calibrator sources on the sky for subarcsecond observations at 140 MHz.Methods. We used the multi-beaming capability of LOFAR to conduct a fast and computationally inexpensive survey with the full international LOFAR array. Sources were preselected on the basis of 325 MHz arcminute-scale flux density using existing catalogues. By observing 30 different sources in each of the 12 sets of pointings per hour, we were able to inspect 630 sources in two hours to determine if they possess a sufficiently bright compact component to be usable as LOFAR delay calibrators.Results. More than 40% of the observed sources are detected on multiple baselines between international stations and 86 are classified as satisfactory calibrators. We show that a flat low-frequency spectrum (from 74 to 325 MHz) is the best predictor of compactness at 140 MHz. We extrapolate from our sample to show that the sky density of calibrators that are sufficiently bright to calibrate dispersive and non-dispersive delays for the international LOFAR using existing methods is 1.0 per square degree.Conclusions. The observed density of satisfactory delay calibrator sources means that observations with international LOFAR should be possible at virtually any point in the sky provided that a fast and efficient search, using the methodology described here, is conducted prior to the observation to identify the best calibrator.
  •  
28.
  • Mori, N., et al. (author)
  • PAMELA measurements of the boron and carbon spectra
  • 2015
  • In: 24TH EUROPEAN COSMIC RAY SYMPOSIUM (ECRS). - : IOP Publishing.
  • Conference paper (peer-reviewed)abstract
    • The satellite-borne PAMELA experiment is aimed at precision measurements of the charged light component of the cosmic-ray spectrum, with a particular focus on antimatter. It consists of a magnetic spectrometer, a time-of-flight system, an electromagnetic calorimeter with a tail catcher scintillating layer, an anticoincidence system and a neutron detector. PAMELA has measured the absolute fluxes of boron and carbon and the B/C ratio, which plays a central role in galactic propagation studies in order to derive the injection spectra at sources from measurements at Earth. In this paper, the data analysis techniques and the final results are presented.
  •  
29.
  • Mori, N., et al. (author)
  • The PAMELA experiment and cosmic ray observations
  • 2015
  • In: NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS. - : Elsevier. - 2405-6014. ; , s. 242-244
  • Conference paper (peer-reviewed)abstract
    • The PAMELA space experiment is aimed at precise measurements of the charged light component of the cosmic ray spectrum in the energy range spanning from the sub-GeV region to the TeV region, with a particular focus on antimatter. The instrument consists of a magnetic spectrometer, an electromagnetic sampling calorimeter,a time-off-light system, an anticoincidence shield, a tail-catcher scintillator and a neutron detector. Launched in June 2006 and hosted on the Resurs-DK1 satellite, PAMELA has been taking data for more than eight years, providing scientific results with unprecedented statistics and a continuous monitoring of the sun activity and the heliosphere.
  •  
30.
  • Nelles, A., et al. (author)
  • Calibrating the absolute amplitude scale for air showers measured at LOFAR
  • 2015
  • In: Journal of Instrumentation. - 1748-0221. ; 10
  • Journal article (peer-reviewed)abstract
    • Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR.
  •  
31.
  • Shulevski, A., et al. (author)
  • The peculiar radio galaxy 4C 35.06 : a case for recurrent AGN activity?
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 579, s. 1-10
  • Journal article (peer-reviewed)abstract
    • Using observations obtained with the LOw Fequency ARray (LOFAR), the Westerbork Synthesis Radio Telescope (WSRT) and archival Very Large Array (VLA) data, we have traced the radio emission to large scales in the complex source 4C 35.06 located in the core of the galaxy cluster Abell 407. At higher spatial resolution (~ 4″), the source was known to have two inner radio lobes spanning 31 kpc and a diffuse, low-brightness extension running parallel to them, offset by about 11 kpc (in projection). At 62 MHz, we detect the radio emission of this structure extending out to 210 kpc. At 1.4 GHz and intermediate spatial resolution (~ 30″), the structure appears to have a helical morphology. We have derived the characteristics of the radio spectral index across the source. We show that the source morphology is most likely the result of at least two episodes of AGN activity separated by a dormant period of around 35 Myr. The outermost regions of radio emission have a steep spectral index (α< − 1), indicative of old plasma. We connect the spectral index properties of the resolved source structure with the integrated fluxdensity spectral index of 4C 35.06 and suggest an explanation for its unusual integrated flux density spectral shape (a moderately steep power law with no discernible spectral break), possibly providing a proxy for future studies of more distant radio sources through inferring their detailed spectral index properties and activity history from their integrated spectral indices. The AGN is hosted by one of the galaxies located in the cluster core of Abell 407. We propose that it is intermittently active as it moves in the dense environment in the cluster core. In this scenario, the AGN turned on sometime in the past, and has produced the helical pattern of emission, possibly a sign of jet precession/merger during that episode of activity. Using LOFAR, we can trace the relic plasma from that episode of activity out to greater distances from the core than ever before. Using the the WSRT, we detect H I in absorption against the center of the radio source. The absorption profile is relatively broad (FWHM of 288 kms-1), similar to what is found in other clusters. The derived column density is NHI ~ 4 × 1020 cm-2 for a Tspin = 100 K. This detection supports the connection – already suggested for other restarted radio sources – between the presence of cold gas and restarting activity. The cold gas appears to be dominated by a blue-shifted component although the broad H I profile could also include gas with different kinematics. Understanding the duty cycle of the radio emission as well as the triggering mechanism for starting (or restarting) the radio-loud activity can provide important constraints to quantify the impact of AGN feedback on galaxy evolution. The study of these mechanisms at low frequencies using morphological and spectral information promises to bring new important insights in this field.
  •  
32.
  • Sobey, C., et al. (author)
  • LOFAR discovery of a quiet emission mode in PSR B0823+26
  • 2015
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 451, s. 2493-2506
  • Journal article (peer-reviewed)abstract
    • PSR B0823+26, a 0.53-s radio pulsar, displays a host of emission phenomena over time-scales of seconds to (at least) hours, including nulling, subpulse drifting, and mode-changing. Studying pulsars like PSR B0823+26 provides further insight into the relationship between these various emission phenomena and what they might teach us about pulsar magnetospheres. Here we report on the LOFAR (Low-Frequency Array) discovery that PSR B0823+26 has a weak and sporadically emitting ‘quiet’ (Q) emission mode that is over 100 times weaker (on average) and has a nulling fraction forty-times greater than that of the more regularly-emitting ‘bright’ (B) mode. Previously, the pulsar has been undetected in the Q mode, and was assumed to be nulling continuously. PSR B0823+26 shows a further decrease in average flux just before the transition into the B mode, and perhaps truly turns off completely at these times. Furthermore, simultaneous observations taken with the LOFAR, Westerbork, Lovell, and Effelsberg telescopes between 110 MHz and 2.7 GHz demonstrate that the transition between the Q mode and B mode occurs within one single rotation of the neutron star, and that it is concurrent across the range of frequencies observed.
  •  
33.
  • Stewart, A. J., et al. (author)
  • LOFAR MSSS : detection of a low-frequency radio transient in 400 h of monitoring of the North Celestial Pole
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:3, s. 2321-2342
  • Journal article (peer-reviewed)abstract
    • We present the results of a four-month campaign searching for low-frequency radio transients near the North Celestial Pole with the Low-Frequency Array (LOFAR), as part of the Multifrequency Snapshot Sky Survey (MSSS). The data were recorded between 2011 December and 2012 April and comprised 2149 11-min snapshots, each covering 175 deg2. We have found one convincing candidate astrophysical transient, with a duration of a few minutes and a flux density at 60 MHz of 15–25 Jy. The transient does not repeat and has no obvious optical or high-energy counterpart, as a result of which its nature is unclear. The detection of this event implies a transient rate at 60 MHz of 3.9−3.7+14.7×10−4" style="position: relative;" tabindex="0" id="MathJax-Element-1-Frame" class="MathJax">3.9+14.7−3.7×10−4 d−1 deg−2, and a transient surface density of 1.5 × 10−5 deg−2, at a 7.9-Jy limiting flux density and ∼10-min time-scale. The campaign data were also searched for transients at a range of other time-scales, from 0.5 to 297 min, which allowed us to place a range of limits on transient rates at 60 MHz as a function of observation duration.
  •  
34.
  • Usoskin, I. G., et al. (author)
  • Force-field parameterization of the galactic cosmic ray spectrum : Validation for Forbush decreases
  • 2015
  • In: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 55:12, s. 2940-2945
  • Journal article (peer-reviewed)abstract
    • A useful parametrization of the energy spectrum of galactic cosmic rays (GCR) near Earth is offered by the so-called force-field model which describes the shape of the entire spectrum with a single parameter, the modulation potential. While the usefulness of the force-field approximation has been confirmed for regular periods of solar modulation, it was not tested explicitly for disturbed periods, when GCR are locally modulated by strong interplanetary transients. Here we use direct measurements of protons and alpha-particles performed by the PAMELA space-borne instrument during December 2006, including a major Forbush decrease, in order to directly test the validity of the force-field parameterization. We conclude that (1) The force-field parametrization works very well in describing the energy spectra of protons and alpha-particles directly measured by PAMELA outside the Earths atmosphere; (2) The energy spectrum of GCR can be well parameterized by the force-field model also during a strong Forbush decrease; (3) The estimate of the GCR modulation parameter, obtained using data from the world-wide neutron monitor network, is in good agreement with the spectra directly measured by PAMELA during the studied interval. This result is obtained on the basis of a single event analysis, more events need to be analyzed.
  •  
35.
  • Vakis, A.I., et al. (author)
  • Modeling and simulation in tribology across scales : An overview
  • 2018
  • In: Tribology International. - : Elsevier. - 0301-679X .- 1879-2464. ; 125, s. 169-199
  • Journal article (peer-reviewed)abstract
    • This review summarizes recent advances in the area of tribology based on the outcome of a Lorentz Center workshop surveying various physical, chemical and mechanical phenomena across scales. Among the main themes discussed were those of rough surface representations, the breakdown of continuum theories at the nano- and micro-scales, as well as multiscale and multiphysics aspects for analytical and computational models relevant to applications spanning a variety of sectors, from automotive to biotribology and nanotechnology. Significant effort is still required to account for complementary nonlinear effects of plasticity, adhesion, friction, wear, lubrication and surface chemistry in tribological models. For each topic, we propose some research directions.
  •  
36.
  • Zamora, Juan Carlos, et al. (author)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • In: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Journal article (peer-reviewed)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
37.
  •  
38.
  • Cirino, Glauber, et al. (author)
  • Observations of Manaus urban plume evolution and interaction with biogenic emissions in GoAmazon 2014/5
  • 2018
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 191, s. 513-524
  • Journal article (peer-reviewed)abstract
    • As part of the Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/5) Experiment, detailed aerosol and trace gas measurements were conducted near Manaus, a metropolis located in the central Amazon Basin. Measurements of aerosol particles and trace gases were done downwind Manaus at the sites T2 (Tiwa Hotel) and T3 (Manacapuru), at a distance of 8 and 70 km from Manaus, respectively. Based on in-plume measurements closer to Manaus (site T2), the chemical signatures of city emissions were used to improve the interpretation of pollutant levels at the T3 site. We derived chemical and physical properties for the city's atmospheric emission ensemble, taking into account only air masses impacted by the Manaus plume at both sites, during the wet and dry season Intensive Operating Periods (IOPs). At T2, average concentrations of aerosol number (CN), CO and SO2 were 5500 cm(-3) (between 10 and 490 nm), 145 ppb and 0.60 ppb, respectively, with a typical ratio ACN/ACO of 60-130 particles cm(-3) ppb(-1). The aerosol scattering (at RH < 60%) and absorption at 637 nm at T2 ranged from 10 to 50 M m(-1) and 5-10 M m(-1), respectively, leading to a mean single scattering albedo (SSA) of 0.70. In addition to identifying periods dominated by Manaus emissions at both T2 and T3, the plume transport between the two sampling sites was studied using back trajectory calculations. Results show that the presence of the Manaus plume at site T3 was important mainly during the daytime and at the end of the afternoons. During time periods directly impacted by Manaus emissions, an average aerosol number concentration of 3200 cm(-3) was measured at T3. Analysis of plume evolution between T2 and T3 indicates a transport time of 4-5 h. Changes of submicron organic and sulfate aerosols ratios relative to CO (Delta OA/Delta CO and Delta SO4/Delta CO, respectively) indicate significant production of secondary organic aerosol (SOA), corresponding to a 40% mass increase in OA and a 30% in SO4 mass concentration. Similarly, during air mass arrival at T3 the SSA increased to 0.83 from 0.70 at T2, mainly associated with an increase in organic aerosol concentration. Aerosol particle size distributions show a strong decrease in the Aitken nuclei mode (10-100 nm) during the transport from T2 to T3, in particular above 30 nm, as a result of efficient coagulation processes into larger particles. A decrease of 30% in the particle number concentration and an increase of about 50 nm in geometric mean diameter were observed from T2 to T3 sites. The study of the evolution of aerosol properties downwind of the city of Manaus improves our understanding of how coupling of anthropogenic and biogenic sources may be impacting the sensitive Amazonian atmosphere.
  •  
39.
  •  
40.
  • Di Luccio, Tiziana, et al. (author)
  • Synthesis of CdS nanocrystals in polymeric films studied by in-situ GID and GISAXS
  • 2015
  • In: Insights for Energy Materials Using In-Situ Charaterization. - : Springer Science and Business Media LLC. - 0272-9172. - 9781510826625 ; 1810, s. 9-14
  • Conference paper (peer-reviewed)abstract
    • In this work, we describe the synthesis of CdS nanocrystals in thin polymeric films by in-situ Grazing Incidence Diffraction (GID) and Grazing Incidence Small Angle Scattering (GISAXS). The 2D GISAXS patterns indicate how the precursor structure is altered as the temperature is varied from 25°C to 300°C. At 150°C, the CdS nanocrystals start to arrange themselves in a hexagonal lattice with a lattice parameter of 27 A. The diffraction intensity from the hexagonal lattice reaches a maximum at 170"C and decreases steadily upon further heating above 220°C indicating loss of symmetry. Correspondingly, the GID scans at 170°C show strong crystalline peaks from cubic CdS nanocrystals that are about 2 nm size. The results indicate that a temperature of 170°C is sufficient to synthesize CdS nanocrystals without degradation of the polymer matrix (Topas) in thin films (about 30nm).
  •  
41.
  • Hsu, Y. H., et al. (author)
  • Meta-Analysis of Genomewide Association Studies Reveals Genetic Variants for Hip Bone Geometry
  • 2019
  • In: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 34:7, s. 1284-1296
  • Journal article (peer-reviewed)abstract
    • Hip geometry is an important predictor of fracture. We performed a meta-analysis of GWAS studies in adults to identify genetic variants that are associated with proximal femur geometry phenotypes. We analyzed four phenotypes: (i) femoral neck length; (ii) neck-shaft angle; (iii) femoral neck width, and (iv) femoral neck section modulus, estimated from DXA scans using algorithms of hip structure analysis. In the Discovery stage, 10 cohort studies were included in the fixed-effect meta-analysis, with up to 18,719 men and women ages 16 to 93 years. Association analyses were performed with similar to 2.5 million polymorphisms under an additive model adjusted for age, body mass index, and height. Replication analyses of meta-GWAS significant loci (at adjusted genomewide significance [GWS], threshold p <= 2.6 x 10(-8)) were performed in seven additional cohorts in silico. We looked up SNPs associated in our analysis, for association with height, bone mineral density (BMD), and fracture. In meta-analysis (combined Discovery and Replication stages), GWS associations were found at 5p15 (IRX1 and ADAMTS16); 5q35 near FGFR4; at 12p11 (in CCDC91); 11q13 (near LRP5 and PPP6R3 (rs7102273)). Several hip geometry signals overlapped with BMD, including LRP5 (chr. 11). Chr. 11 SNP rs7102273 was associated with any-type fracture (p = 7.5 x 10(-5)). We used bone transcriptome data and discovered several significant eQTLs, including rs7102273 and PPP6R3 expression (p = 0.0007), and rs6556301 (intergenic, chr.5 near FGFR4) and PDLIM7 expression (p = 0.005). In conclusion, we found associations between several genes and hip geometry measures that explained 12% to 22% of heritability at different sites. The results provide a defined set of genes related to biological pathways relevant to BMD and etiology of bone fragility. (c) 2019 American Society for Bone and Mineral Research.
  •  
42.
  • Humphries, Matthew P., et al. (author)
  • A case-matched gender comparison transcriptomic screen identifies eIF4E and eIF5 as potential prognostic markers in male breast cancer
  • 2017
  • In: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 23:10, s. 2575-2583
  • Journal article (peer-reviewed)abstract
    • Purpose: Breast cancer affects both genders, but is understudied in men. Although still rare, male breast cancer (MBC) is being diagnosed more frequently. Treatments are wholly informed by clinical studies conducted in women, based on assumptions that underlying biology is similar. Experimental Design: A transcriptomic investigation of male and female breast cancer was performed, confirming transcriptomic data in silico. Biomarkers were immunohistochemically assessed in 697 MBCs (n = 477, training; n = 220, validation set) and quantified in pre- and posttreatment samples from an MBC patient receiving everolimus and PI3K/mTOR inhibitor. Results: Gender-specific gene expression patterns were identified. eIF transcripts were upregulated in MBC. eIF4E and eIF5 were negatively prognostic for overall survival alone (log-rank P = 0.013; HR = 1.77, 1.12-2.8 and P = 0.035; HR = 1.68, 1.03-2.74, respectively), or when coexpressed (P = 0.01; HR = 2.66, 1.26-5.63), confirmed in the validation set. This remained upon multivariate Cox regression analysis [eIF4E P = 0.016; HR = 2.38 (1.18-4.8), eIF5 P = 0.022; HR = 2.55 (1.14-5.7); coexpression P = 0.001; HR = 7.04 (2.22-22.26)]. Marked reduction in eIF4E and eIF5 expression was seen post BEZ235/everolimus, with extended survival. Conclusions: Translational initiation pathway inhibition could be of clinical utility in MBC patients overexpressing eIF4E and eIF5. With mTOR inhibitors that target this pathway now in the clinic, these biomarkers may represent new targets for therapeutic intervention, although further independent validation is required.
  •  
43.
  • Karelin, A. V., et al. (author)
  • The high energy cosmic ray particle spectra measurements with the PAMELA calorimeter
  • 2016
  • In: Nuclear and Particle Physics Proceedings. - : Elsevier. - 2405-6014. ; 273-275, s. 275-281
  • Journal article (peer-reviewed)abstract
    • Up until now there has been limited, contradictive data on the high energy range of the cosmic ray electron-positron, proton and helium spectra. Due to the limitations of the use of a magnetic spectrometer, over 8 years experimental data was processed using information from a sampling electro-magnetic calorimeter, a neutron detector and scintillator detectors. The use of these devices allowed us to successfully obtain the high energy cosmic ray particle spectra measurements. The results of this study clarify previous findings and greaten our understanding of the origin of cosmic rays.
  •  
44.
  • Müser, M. H., et al. (author)
  • Meeting the Contact-Mechanics Challenge
  • 2017
  • In: Tribology letters. - : Springer New York LLC. - 1023-8883 .- 1573-2711. ; 65:4
  • Journal article (peer-reviewed)abstract
    • This paper summarizes the submissions to a recently announced contact-mechanics modeling challenge. The task was to solve a typical, albeit mathematically fully defined problem on the adhesion between nominally flat surfaces. The surface topography of the rough, rigid substrate, the elastic properties of the indenter, as well as the short-range adhesion between indenter and substrate, were specified so that diverse quantities of interest, e.g., the distribution of interfacial stresses at a given load or the mean gap as a function of load, could be computed and compared to a reference solution. Many different solution strategies were pursued, ranging from traditional asperity-based models via Persson theory and brute-force computational approaches, to real-laboratory experiments and all-atom molecular dynamics simulations of a model, in which the original assignment was scaled down to the atomistic scale. While each submission contained satisfying answers for at least a subset of the posed questions, efficiency, versatility, and accuracy differed between methods, the more precise methods being, in general, computationally more complex. The aim of this paper is to provide both theorists and experimentalists with benchmarks to decide which method is the most appropriate for a particular application and to gauge the errors associated with each one..
  •  
45.
  •  
46.
  • Spagnuolo, R., et al. (author)
  • Deregulation of SGK1 in Ulcerative Colitis: A Paradoxical Relationship Between Immune Cells and Colonic Epithelial Cells
  • 2018
  • In: Inflammatory Bowel Diseases. - : Oxford University Press (OUP). - 1078-0998 .- 1536-4844. ; 24:9, s. 1967-1977
  • Journal article (peer-reviewed)abstract
    • Background: Inflammatory bowel disease (IBD) is due to the interaction of genetic and environmental factors that trigger an unbalanced immune response ultimately resulting in the peculiar inflammatory reaction. Experimental models of IBD point to a role of T-cell-derived cytokines (Th17) and to SGK1 as mediator of the Th17 switch. We hypothesize that SGK1, a salt inducible kinase, directs lymphocytic behavior and tissue damage. Methods: Eleven controls and 32 ulcerative colitis (UC) patients were randomized according to endoscopic Mayo score. Mucosal biopsies from different intestinal tracts were analyzed by immunohistochemistry and quantitative real-time polymerase chain reaction to check the expression of disease markers including SGK1. Peripheral blood mononuclear cells (PBMCs) from patients and controls were analyzed by fluorescence-activated cell sorting. Finally, an in vitro cell model was developed to test the hypothesis. Results: SGK1 mRNA and protein expression in lesional areas of UC patients were lower than in normal peri-lesional areas of the same patients and in normal tissues of healthy controls. SGK1 expression was increased in PBMCs from UC patients, particularly in the CD4+ cell population, enriched in Th17 cells. IL17/IL13 was increased in patients and correlated with SGK1 expression. Genetically engineered Jurkat cells confirmed the effect of SGK1 overexpression on viability of RKO cells. Conclusions: These observations suggest a pathogenic mechanism whereby SGK1 overexpression in CD4+ T cells induces the secretion of the inflammatory cytokines IL17 and IL13, which downregulate the expression of SGK1 in target tissues. Our data suggest a novel hypothesis in the pathogenesis of UC, integrating colonic epithelial cells and lymphocytes.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  • Wang, Jian, et al. (author)
  • Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall
  • 2016
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 539:7629, s. 416-419
  • Journal article (peer-reviewed)abstract
    • The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere(1). Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions(3-5), but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear(6-8). Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 50
Type of publication
journal article (43)
conference paper (7)
Type of content
peer-reviewed (48)
other academic/artistic (2)
Author/Editor
Casolino, M. (21)
Simon, M. (17)
Vacchi, A. (15)
Bonvicini, V. (15)
Zampa, G. (15)
Carlson, Per (15)
show more...
Bruno, A. (15)
Bellotti, R. (15)
Cafagna, F. (15)
De Santis, C. (15)
Marcelli, L. (15)
Martucci, M. (15)
Monaco, A. (15)
Osteria, G. (15)
Picozza, P. (15)
Ricci, M. (15)
Castellini, G. (15)
Adriani, O. (15)
Barbarino, G. C. (15)
Bazilevskaya, G. A. (15)
Boezio, M. (15)
Bogomolov, E. A. (15)
Bongi, M. (15)
Bottai, S. (15)
Carbone, R. (15)
De Simone, N. (15)
Di Felice, V. (15)
Galper, A. M. (15)
Koldashov, S. V. (15)
Kvashnin, A. N. (15)
Menn, W. (15)
Mikhailov, V. V. (15)
Mocchiutti, E. (15)
Mori, N. (15)
Papini, P. (15)
Ricciarini, S. B. (15)
Sparvoli, R. (15)
Spillantini, P. (15)
Vannuccini, E. (15)
Voronov, S. A. (15)
Zampa, N. (15)
Karelin, A. V. (15)
Merge, M. (15)
Pearce, Mark (14)
Campana, D. (14)
De Donato, C. (14)
Yurkin, Y. T. (14)
Panico, B. (13)
Krutkov, S. Y. (13)
Mayorov, A. G. (13)
show less...
University
Royal Institute of Technology (22)
Stockholm University (11)
Lund University (11)
Karolinska Institutet (9)
Uppsala University (8)
Linnaeus University (8)
show more...
Chalmers University of Technology (5)
University of Gothenburg (4)
Luleå University of Technology (1)
RISE (1)
Swedish Museum of Natural History (1)
Swedish University of Agricultural Sciences (1)
IVL Swedish Environmental Research Institute (1)
show less...
Language
English (50)
Research subject (UKÄ/SCB)
Natural sciences (36)
Medical and Health Sciences (4)
Engineering and Technology (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view