SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carlborg Markus 1986 ) srt2:(2021)"

Sökning: WFRF:(Carlborg Markus 1986 ) > (2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ma, Charlie, et al. (författare)
  • Structures and diffusion motions of K and Ca in biomass ash slags from molecular dynamics simulations
  • 2021
  • Ingår i: Fuel. - : Elsevier. - 0016-2361 .- 1873-7153. ; 302
  • Tidskriftsartikel (refereegranskat)abstract
    • The ash slag formations that can occur in combustion and gasification of solid fuels often consist of silicate melts that can cause operational problems, e.g., bed agglomeration or slag build-up. This study aims to better understand the underlying molecular structures and motions that bring about viscosity variations in biomass ash slags that are rich in Ca and K. Aspects of slag structure, diffusivity, and cation motion in the molten CaO–K2O–SiO2 system were acquired from molecular dynamics simulations. These results are discussed in relation to viscosity values found in literature. Among the structural characteristics of the silicate network, the simulations showed that the local structures of both Ca and K were affected by composition, with stronger integration of Ca within the silicate network than K. The formation of larger ring structures due to network depolymerisation occurred with increasing diffusivity and lower viscosity, but small rings prevailed due to clusters of Si and O atoms that formed cohesive structures. Both Ca and K showed hopping motions as they diffused through the network, especially in high viscosity compositions. These cations exhibited preferential migration to positions previously occupied by the same species, as a means of moving around the network-forming Si and O atoms that diffused slower. The diffusivity of K ions was facilitated by transport in percolation channels. The presence of slower-diffusing Ca ions occupied positions that could otherwise have contributed to K diffusivity. This work contributes towards understanding of ash slags in thermochemical processes by exploring network modifier mobility in silicate slags.
  •  
2.
  • Latham, Kenneth G., et al. (författare)
  • Self-generation of low ash carbon microspheres from the hydrothermal supernatant of anaerobic digestate : Formation insights and supercapacitor performance
  • 2021
  • Ingår i: Chemical Engineering Journal Advances. - : Elsevier. - 2666-8211. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • This work provides the first observations of and insights into the self-generation of carbon microspheres from the supernatant after hydrothermal carbonization of anaerobic digestate has been completed and the hydrochar removed. Solid State NMR and XPS revealed that the carbon microspheres were comprised of decomposed fragments of proteins, carbohydrates and lignin. The carbon microspheres were significantly lower in ash content (3.1%), compared to the hydrothermal solid (41.2%) and precursor (25.2%) and their formation reduced the total organic carbon load of the supernatant. The low ash content allowed them to be easily activated, achieving a surface area of 1711.0 m2 g−1, compared to 51.4 m2 g−1 for the activated hydrothermal solid and 12.8 m2 g−1 for the activated precursor. The microcarbon spheres achieved a specific capacitance from cyclic voltammetry of 86 F g−1 at 100 mV s−1 to 176 F g−1 at 1 mV s−1, while the gravimetric capacitance was 42 F g−1 at 25 A g−1 and 140 F g−1 at 0.5 A g−1 in 0.5 M Li2SO4 and a 1.8V potential window. Overall, this study highlights the importance of exploring this new product and its valorisation potential for the hydrothermal carbonization of ash-rich precursors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy