SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carlsson Fredric) srt2:(2015-2019)"

Sökning: WFRF:(Carlsson Fredric) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lienard, Julia, et al. (författare)
  • ESX-1 exploits type I IFN-signalling to promote a regulatory macrophage phenotype refractory to IFNγ-mediated autophagy and growth restriction of intracellular mycobacteria
  • 2016
  • Ingår i: Cellular Microbiology. - : Hindawi Limited. - 1462-5814. ; 18:10, s. 1471-1485
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary: The ability of macrophages to eradicate intracellular pathogens is normally greatly enhanced by IFNγ, a cytokine produced mainly after onset of adaptive immunity. However, adaptive immunity is unable to provide sterilizing immunity against mycobacteria, suggesting that mycobacteria have evolved virulence strategies to inhibit the bactericidal effect of IFNγ-signalling in macrophages. Still, the host-pathogen interactions and cellular mechanisms responsible for this feature have remained elusive. We demonstrate that the ESX-1 type VII secretion systems of Mycobacterium tuberculosis and Mycobacteriummarinum exploit type I IFN-signalling to promote an IL-12low/IL-10high regulatory macrophage phenotype characterized by secretion of IL-10, IL-27 and IL-6. This mechanism had no impact on intracellular growth in the absence of IFNγ but suppressed IFNγ-mediated autophagy and growth restriction, indicating that the regulatory phenotype extends to function. The IFNγ-refractory phenotype was partly mediated by IL-27-signalling, establishing functional relevance for this downstream cytokine. These findings identify a novel macrophage-modulating function for the ESX-1 secretion system that may contribute to suppress the efficacy of adaptive immunity and provide mechanistic insight into the antagonistic cross talk between type I IFNs and IFNγ in mycobacterial infection.
  •  
2.
  • Lienard, Julia, et al. (författare)
  • Murine Mycobacterium marinum infection as a model for tuberculosis
  • 2017
  • Ingår i: Methods in Molecular Biology. - New York, NY : Springer New York. - 1064-3745. ; 1535, s. 301-315
  • Bokkapitel (refereegranskat)abstract
    • Mycobacteria are a major human health problem globally. Regarding tuberculosis the situation is worsened by the poor efficacy of current vaccine regimens and by emergence of drug-resistant strains (Manjelievskaia J et al, Trans R Soc Trop Med Hyg 110: 110, 2016; Pereira et al., Lancet Infect Dis 12:300–306, 2012; http://www.who.int/tb/publications/global_report/en/) undermining both disease-prevention and available treatments. Thus, increased basic understanding of mycobacterial—and particularly Mycobacterium tuberculosis —virulence strategies and pathogenesis is of great importance. To this end several in vivo infection models are available (Guirado and Schlesinger, Front Immunol 4:98, 2013; Leung et al., Eur J Immunol 43:2246–2254, 2013; Patel et al., J Lab Physicians 3:75–79, 2011; van Leeuwen et al., Cold Spring Harb Perspect Med 5:a018580, 2015). While these models all have their merits they also exhibit limitations, and none perfectly mimics all aspects of human tuberculosis. Thus, there is a need for multiple models that may complement each other, ultimately allowing us to gain true insight into the pathogenesis of mycobacterial infections. Here, we describe a recently developed mouse model of Mycobacterium marinum infection that allows kinetic and quantitative studies of disease progression in live animals [8]. Notably, this model exhibits features of human tuberculosis not replicated in M. tuberculosis infected mice, and may provide an important complement to the field. For example, granulomas in the M. marinum model develop central caseating necrosis (Carlsson et al., PLoS Pathog 6:e1000895, 2010), a hallmark of granulomas in human tuberculosis normally not replicated in murine M. tuberculosis infection. Moreover, while tuberculosis is heterogeneous and presents with a continuum of active and latent disease, M. tuberculosis infected mice essentially lack this dynamic range and do not replicate latency (Guirado and Schlesinger, Front Immunol 4:98, 2013; Patel et al., J Lab Physicians 3(2):75–79, 2011). In contrast, M. marinum infected mice may naturally develop latency, as suggested by reduced inflammation and healing of the diseased tissue while low numbers of bacteria persist in granulomatous lesions (Carlsson et al., PLoS Pathog 6:e1000895, 2010). Thus, infection with M. marinum may offer a unique murine model for studying granuloma formation as well as latency— and possibly also for studies of disease-reactivation. In addition to the in vivo model, we describe infection of bone marrow-derived murine macrophages, an in vitro platform enabling detailed mechanistic studies of host-pathogen interactions occurring in the principal host target cell for pathogenic mycobacteria.
  •  
3.
  • Movert, Elin, et al. (författare)
  • Streptococcal M protein promotes IL-10 production by cGAS-independent activation of the STING signaling pathway
  • 2018
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7374 .- 1553-7366. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • From an evolutionary point of view a pathogen might benefit from regulating the inflammatory response, both in order to facilitate establishment of colonization and to avoid life-threatening host manifestations, such as septic shock. In agreement with this notion Streptococcus pyogenes exploits type I IFN-signaling to limit detrimental inflammation in infected mice, but the host-pathogen interactions and mechanisms responsible for induction of the type I IFN response have remained unknown. Here we used a macrophage infection model and report that S. pyogenes induces anti-inflammatory IL-10 in an M protein-dependent manner, a function that was mapped to the B- and C-repeat regions of the M5 protein. Intriguingly, IL-10 was produced downstream of type I IFN-signaling, and production of type I IFN occurred via M protein-dependent activation of the STING signaling pathway. Activation of STING was independent of the cytosolic double stranded DNA sensor cGAS, and infection did not induce detectable release into the cytosol of either mitochondrial, nuclear or bacterial DNA–indicating DNA-independent activation of the STING pathway in S. pyogenes infected macrophages. These findings provide mechanistic insight concerning how S. pyogenes induces the type I IFN response and identify a previously unrecognized macrophage-modulating role for the streptococcal M protein that may contribute to curb the inflammatory response to infection.
  •  
4.
  • Olsson, Oskar, et al. (författare)
  • Plasma profiles of inflammatory markers associated with active tuberculosis in antiretroviral therapy-naive human immunodeficiency virus-positive individuals
  • 2019
  • Ingår i: Open Forum Infectious Diseases. - : Oxford University Press (OUP). - 2328-8957. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Diagnosis of tuberculosis (TB) in human immunodeficiency virus (HIV)-coinfected individuals is challenging. We hypothesized that combinations of inflammatory markers could facilitate identification of active TB in HIV-positive individuals. Methods. Participants were HIV-positive, treatment-naive adults systematically investigated for TB at Ethiopian health centers. Plasma samples from 130 subjects with TB (HIV+/TB+) and 130 subjects without TB (HIV+/TB−) were tested for concentration of the following markers: CCL5, C-reactive protein (CRP), interleukin (IL)-6, IL12-p70, IL-18, IL-27, interferon-γ-induced protein-10 (IP-10), procalcitonin (PCT), and soluble urokinase-type plasminogen activator receptor (suPAR). Analyzed markers were then assessed, either individually or in combination, with regard to infection status, CD4 cell count, and HIV ribonucleic acid (RNA) levels. Results. The HIV+/TB+ subjects had higher levels of all markers, except IL12p70, compared with HIV+/TB− subjects. The CRP showed the best performance for TB identification (median 27.9 vs 1.8 mg/L for HIV+/TB+ and HIV+/TB−, respectively; area under the curve [AUC]: 0.80). Performance was increased when CRP was combined with suPAR analysis (AUC, 0.83 [0.93 for subjects with CD4 cell count <200 cells/mm3]). Irrespective of TB status, IP-10 concentrations correlated with HIV RNA levels, and both IP-10 and IL-18 were inversely correlated to CD4 cell counts. Conclusions. Although CRP showed the best single marker discriminatory potential, combining CRP and suPAR analyses increased performance for TB identification.
  •  
5.
  • van Hensbergen, Vincent P., et al. (författare)
  • Streptococcal Lancefield polysaccharides are critical cell wall determinants for human Group IIA secreted phospholipase A2 to exert its bactericidal effects
  • 2018
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7374. ; 14:10, s. 1007348-1007348
  • Tidskriftsartikel (refereegranskat)abstract
    • Human Group IIA secreted phospholipase A2 (hGIIA) is an acute phase protein with bactericidal activity against Gram-positive bacteria. Infection models in hGIIA transgenic mice have suggested the importance of hGIIA as an innate defense mechanism against the human pathogens Group A Streptococcus (GAS) and Group B Streptococcus (GBS). Compared to other Gram-positive bacteria, GAS is remarkably resistant to hGIIA activity. To identify GAS resistance mechanisms, we exposed a highly saturated GAS M1 transposon library to recombinant hGIIA and compared relative mutant abundance with library input through transposon-sequencing (Tn-seq). Based on transposon prevalence in the output library, we identified nine genes, including dltA and lytR, conferring increased hGIIA susceptibility. In addition, seven genes conferred increased hGIIA resistance, which included two genes, gacH and gacI that are located within the Group A Carbohydrate (GAC) gene cluster. Using GAS 5448 wild-type and the isogenic gacI mutant and gacI-complemented strains, we demonstrate that loss of the GAC N-acetylglucosamine (GlcNAc) side chain in the ΔgacI mutant increases hGIIA resistance approximately 10-fold, a phenotype that is conserved across different GAS serotypes. Increased resistance is associated with delayed penetration of hGIIA through the cell wall. Correspondingly, loss of the Lancefield Group B Carbohydrate (GBC) rendered GBS significantly more resistant to hGIIA-mediated killing. This suggests that the streptococcal Lancefield antigens, which are critical determinants for streptococcal physiology and virulence, are required for the bactericidal enzyme hGIIA to exert its bactericidal function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy