SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Casanova J. L.) srt2:(2005-2009)"

Sökning: WFRF:(Casanova J. L.) > (2005-2009)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aamodt, K., et al. (författare)
  • The ALICE experiment at the CERN LHC
  • 2008
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Forskningsöversikt (refereegranskat)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
2.
  • Davidson, D. J., et al. (författare)
  • IRAK-4 mutation (Q293X): rapid detection and characterization of defective post-transcriptional TLR/IL-1R responses in human myeloid and non-myeloid cells
  • 2006
  • Ingår i: J Immunol. ; 177:11, s. 8202-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Innate immunodeficiency has recently been reported as resulting from the Q293X IRAK-4 mutation with consequent defective TLR/IL-1R signaling. In this study we report a method for the rapid allele-specific detection of this mutation and demonstrate both cell type specificity and ligand specificity in defective IL-1R-associated kinase (IRAK)-4-deficient cellular responses, indicating differential roles for this protein in human PBMCs and primary dermal fibroblasts and in LPS, IL-1beta, and TNF-alpha signaling. We demonstrate transcriptional and post-transcriptional defects despite NF-kappaB signaling and intact MyD88-independent signaling and propose that dysfunctional complex 1 (IRAK1/TRAF6/TAK1) signaling, as a consequence of IRAK-4 deficiency, generates specific defects in MAPK activation that could underpin this patient's innate immunodeficiency. These studies demonstrate the importance of studying primary human cells bearing a clinically relevant mutation; they underscore the complexity of innate immune signaling and illuminate novel roles for IRAK-4 and the fundamental importance of accessory proinflammatory signaling to normal human innate immune responses and immunodeficiencies.
  •  
3.
  • Mordaka, J., et al. (författare)
  • The importance of rotational kinematics in pedestrian head to windshield impacts
  • 2007
  • Ingår i: International Research Council on the Biomechanics of Injury - 2007 International IRCOBI Conference on the Biomechanics of Injury, Proceedings. - 2951421087 - 9782951421080 ; , s. 83-94
  • Konferensbidrag (refereegranskat)abstract
    • The objective of the present study was to analyze the effect of angular kinematics on head injury in pedestrian head-to-windshield impacts. Three cases of pedestrian head impacts were simulated with FE head and windshield models. The initial impact conditions were obtained from pedestrian accident reconstructions carried out using multi-body pedestrian and car models. The results from the FE head model were compared with injuries reported in the database. Maximum principal strain was chosen as the injury indicator. After successful head injury predictions, the initial velocities were varied and as a result different peak angular velocities and accelerations were simulated. The results showed that increased peak change in angular velocity caused higher maximal principal strain in the brain and in consequence higher probability of Diffuse Axonal Injury (DAI), and Acute Subdural Haematoma (ASDH). A dramatic, three-fold increase in the strain levels in the brain was found when doubling the impact velocity. This paper presents work performed within the framework of a European Commission 6 th framework project (APROSYS).
  •  
4.
  •  
5.
  • Notarangelo, LD, et al. (författare)
  • Primary immunodeficiencies: 2009 update
  • 2009
  • Ingår i: The Journal of allergy and clinical immunology. - : Elsevier BV. - 1097-6825 .- 0091-6749. ; 124:6, s. 1161-1178
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy