SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chábera Pavel) srt2:(2020-2024)"

Sökning: WFRF:(Chábera Pavel) > (2020-2024)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benazzi, Elisabetta, et al. (författare)
  • Acid-triggering of light-induced charge-separation in hybrid organic/inorganic molecular photoactive dyads for harnessing solar energy
  • 2021
  • Ingår i: Inorganic Chemistry Frontiers. - : Royal Society of Chemistry (RSC). - 2052-1553. ; 8:6, s. 1610-1618
  • Tidskriftsartikel (refereegranskat)abstract
    • H+ modulated charge-transfer in photoexcited covalent polyoxometalate-bodipy conjugates is described. The hybrid organic/inorganic molecular photoactive dyads are based on Keggin-type polyoxometalates (POMs, where KM = [PM11O39] and M = Mo or W) covalently grafted via an organotin linker to a bodipy (BOD) photosensitizer. The relative potentials of the photosensitizer and POM are aligned such that light-induced electron transfer from BOD to POM is permitted for the polyoxomolybdate KMoSn[BOD] but not effective for the polyoxotungstate analogue KWSn[BOD]. In both cases, the addition of acid shifts the redox potential of the POM only, to increase the driving force for electron transfer. This leads to charge-separation being switched on for KWSn[BOD] in the presence of acid. The addition of acid to KMoSn[BOD] accelerates charge-separation by an order of magnitude (from 2 ns to 200 ps) and is accompanied by a deceleration of charge recombination, leading to a charge-separated state lifetime of up to 1.3 μs. This behaviour is consistent with proton coupled electron transfer, which has previously been observed electrochemically for POMs, but this study shows, for the first time, the impact of protonation on photoinduced electron transfer. This journal is
  •  
2.
  • Chábera, Pavel, et al. (författare)
  • Photofunctionality of iron(III) N-heterocyclic carbenes and related d5 transition metal complexes
  • 2021
  • Ingår i: Coordination Chemistry Reviews. - : Elsevier BV. - 0010-8545. ; 426
  • Forskningsöversikt (refereegranskat)abstract
    • Despite a few reports of photoluminescent and strongly photo-oxidizing transition metal complexes with a d5 electronic configuration, the photophysics and photochemistry of this class of transition metal complexes have largely remained unexplored. Recent investigations of earth-abundant iron(III) N-heterocyclic carbene (NHC) complexes have demonstrated promising photophysical and photochemical properties associated with low-spin (doublet) ligand-to-metal charge transfer (2LMCT) excitations, including nanosecond photoluminescence (PL) and capabilities to drive both photo-oxidation and photo-reduction reactions. These encouraging results are at first sight surprising in light of the general scarcity of known photofunctional complexes of any transition metal complexes with a d5 electronic configuration, including 1st, 2nd and 3rd row transition metal complexes of Mn(II), Tc(II), Re(II), Fe(III), Ru(III) and Os(III). Here, we review the photophysical and photochemical properties of the new Fe(III) NHC complexes together with related d5 transition metal complexes as a basis for a broader understanding of the unorthodox photophysical and photochemical properties associated with this open-shell electronic configuration. This includes considerations of the role of charge and spin effects on the ground state electronic structure, as well as discussions of charge transfer (CT) and metal centered (MC) excited state properties. The special properties of 2LMCT excited states are emphasized as a key feature to understand the photophysics of many photofunctional d5 transition metal complexes. Further aspects of excited state dynamics with d5 light-harvesting complexes, including both intra- and inter-molecular charge transfer processes, are also discussed. Finally, some fundamental challenges and emerging opportunities for further development of photofunctional Fe(III) NHC and related LMCT/d5 complexes for light-harvesting, light-emitting, and photo(electro)chemical applications are outlined. This includes some general considerations of how the specific photochemical properties of the LMCT/d5 complexes provides an exciting opportunity to develop a unique niche within the diversity of photofunctional molecular systems alongside other types of organic and inorganic chromophores commonly used in the field of molecular photochemistry.
  •  
3.
  • Ghosh, Supriya, et al. (författare)
  • Slower Auger Recombination in 12-Faceted Dodecahedron CsPbBr3 Nanocrystals
  • 2023
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 14:4, s. 1066-1072
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past two decades, intensive research efforts have been devoted to suppressions of Auger recombination in metal-chalcogenide and perovskite nanocrystals (PNCs) for the application of photovoltaics and light emitting devices (LEDs). Here, we have explored dodecahedron cesium lead bromide perovskite nanocrystals (DNCs), which show slower Auger recombination time compared to hexahedron nanocrystals (HNCs). We investigate many-body interactions that are manifested under high excitation flux density in both NCs using ultrafast spectroscopic pump-probe measurements. We demonstrate that the Auger recombination rate due to multiexciton recombinations are lower in DNCs than in HNCs. At low and intermediate excitation density, the majority of carriers recombine through biexcitonic recombination. However, at high excitation density (>1018 cm-3) a higher number of many-body Auger process dominates over biexcitonic recombination. Compared to HNCs, high PLQY and slower Auger recombinations in DNCs are likely to be significant for the fabrication of highly efficient perovskite-based photonics and LEDs.
  •  
4.
  • Guo, Meiyuan, et al. (författare)
  • HERFD-XANES probes of electronic structures of ironII/IIIcarbene complexes
  • 2020
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 22:16, s. 9067-9073
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron centeredN-heterocyclic carbene (Fe-NHC) complexes have shown long-lived excited states with charge transfer character useful for light harvesting applications. Understanding the nature of the metal-ligand bond is of fundamental importance to rationally tailor the properties of transition metal complexes. The high-energy-resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) has been used to probe the valence orbitals of three carbene complexes, [FeII(bpy)(btz)2](PF6)2(bpy = 2,2′-bipyridine, btz = 3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene)), [FeIII(btz)3](PF6)3, and [FeIII(phtmeimb)2]PF6(phtmeimb = [phenyl(tris(3-methylimidazol-2-ylidene))borate]−). The multiconfigurational restrict active space (RAS) approach has been used to simulate the metal K pre-edge X-ray absorption spectroscopy of these carbene complexes, and have reproduced the metal K pre-edge spectral features in terms of relative intensity and peak positions. The evident intensity difference between the FeIIand the other two FeIIIcomplexes has been elucidated with different intensity mechanisms in the transition. The smaller splitting between the t2gand egcharacter peak for [FeIII(btz)3](PF6)3has been observed in the experimental measurements and been reproduced in the RAS calculations. The results show how the combination of experimental HERFD-XANES measurements andab initioRAS simulations can give quantitative evaluation of the orbital interactions between metal and ligands for such large and strongly interacting systems and thus allow to understand and predict properties of novel complexes.
  •  
5.
  • He, Yanmei, et al. (författare)
  • Nature of Self-Trapped Exciton Emission in Zero-Dimensional Cs2ZrCl6 Perovskite Nanocrystals
  • 2023
  • Ingår i: The Journal of Physical Chemistry Letters. - 1948-7185. ; 14:34, s. 7665-7671
  • Tidskriftsartikel (refereegranskat)abstract
    • Low dimensional perovskite-inspired materials with self-tapped exciton (STE) emission have stimulated a surge of cutting-edge research in optoelectronics. Despite numerous efforts on developing versatile low-dimensional perovskite-inspired materials with efficient STE emissions, there is little emphasis on the intrinsic dynamics of STE-based broad emission in these materials. Here, we investigated the excited state dynamics in zero-dimensional (0D) Cs2ZrCl6 nanocrystals (NCs) with efficient blue STE emission. By using femtosecond transient absorption (fs-TA) spectroscopy, the ultrafast STE formation process within 400 fs is directly observed. Then, the formed STEs relax to an intermediate STE state with a lifetime of ∼180 ps before reaching the emissive STE state with a lifetime of ∼15 μs. Our work offers a comprehensive and precise dynamic picture of STE emission in low-dimensional metal halides and sheds light on extending their potential applications.
  •  
6.
  • Honarfar, Alireza, et al. (författare)
  • Photoexcitation dynamics in electrochemically charged CdSe quantum dots : From hot carrier cooling to auger recombination of negative trions
  • 2020
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 3:12, s. 12525-12531
  • Tidskriftsartikel (refereegranskat)abstract
    • Fulfilling the potential of colloidal semiconductor quantum dots (QDs) in electrically driven applications remains a challenge largely since operation of such devices involves charged QDs with drastically different photophysical properties compared to their well-studied neutral counterparts. In this work, the full picture of excited state dynamics in charged CdSe QDs at various time scales has been revealed via transient absorption spectroscopy combined with electrochemistry as a direct manipulation tool to control the negative charging of CdSe QDs. In trions, excited states of single charged QDs, the additional electron in the conduction band speeds up the hot electron cooling by enhanced electron-electron scattering followed by charge redistribution and polaron formation in a picosecond time scale. The trions are finally decayed by the Auger process in a 500 ps time scale. Double charging in QDs, on the other hand, decelerates the polaron formation process while accelerates the following Auger decay. Our work demonstrates the potential of photoelectrochemistry as a platform for ultrafast spectroscopy of charged species and paves the way for further studies to develop comprehensive knowledge of the photophysical processes in charged QDs more than the well-known Auger decay, facilitating their use in future optoelectronic applications.
  •  
7.
  • Honarfar, Alireza, et al. (författare)
  • Ultrafast Spectroelectrochemistry Reveals Photoinduced Carrier Dynamics in Positively Charged CdSe Nanocrystals
  • 2021
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:26, s. 14332-14337
  • Tidskriftsartikel (refereegranskat)abstract
    • Extra charges in semiconductor nanocrystals are of paramount importance for their electrically driven optoelectronic and photovoltaic applications. Optical excitations of such charged nanocrystals lead to rapid recombinationviaan Auger process, which can deteriorate the performance of the corresponding devices. While numerous articles report trion Auger processes in negatively charged nanocrystals, optical studies of well-controlled positive charging of nanocrystals and detailed studies of positive trions remain rare. In this work, we used electrochemistry to achieve positive charging of CdSe nanocrystals, so-called quantum dots (QDs), in a controlled way. Femtosecond transient absorption spectroscopy was applied forin situinvestigation of the charge carrier dynamics after optical excitation of the electrochemically charged QD assembly on TiO2. We observe that without bias (i.e., neutral QDs), sub-picosecond hot carrier cooling is followed by multiple phases of the dynamics corresponding to electron injection and transfer to the TiO2. Positive charging first leads to activation of the hole traps close to the valence band maximum, which opens a rapid recombination channel of the optical excitation. A further increase in the positive bias interrupts the electron injection to TiO2, and if nanocrystals are positively charged, it leads to Auger relaxation in a few hundred picosecond timescale. This study represents a step toward the understanding of the effect of positive charging on the performance of semiconductor nanocrystals under conditions which closely mimic their potential applications.
  •  
8.
  • Kaufhold, Simon, et al. (författare)
  • Microsecond Photoluminescence and Photoreactivity of a Metal-Centered Excited State in a Hexacarbene-Co(III) Complex
  • 2021
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; , s. 1307-1312
  • Tidskriftsartikel (refereegranskat)abstract
    • The photofunctionality of the cobalt-hexacarbene complex [Co(III)(PhB(MeIm)3)2]+ (PhB(MeIm)3 = tris(3-methylimidazolin-2-ylidene)(phenyl)borate) has been investigated by time-resolved optical spectroscopy. The complex displays a weak (φ ∼10-4) but remarkably long-lived (τ ∼1 μs) orange photoluminescence at 690 nm in solution at room temperature following excitation with wavelengths shorter than 350 nm. The strongly red-shifted emission is assigned from the spectroscopic evidence and quantum chemical calculations as a rare case of luminescence from a metal-centered state in a 3d6 complex. Singlet oxygen quenching supports the assignment of the emitting state as a triplet metal-centered state and underlines its capability of driving excitation energy transfer processes.
  •  
9.
  • Keşan, Gürkan, et al. (författare)
  • Time-Resolved Spectroelectrochemical Dynamics of Carotenoid 8’-apo-β-Carotenal
  • 2023
  • Ingår i: ChemPlusChem. - 2192-6506. ; 88:11
  • Tidskriftsartikel (refereegranskat)abstract
    • This work examines the influence of applied external voltage in bulk electrolysis on the excited-state properties of 8′-apo-β-carotenal in acetonitrile by steady-state and ultrafast time-resolved absorption spectroscopy. The data collected under bulk electrolysis were compared with those taken without applied voltage. The steady-state measurements showed that although intensity of the S0-S2 absorption band varies with the applied voltage, the spectral position remain nearly constant. Comparison of transient absorption spectra shows that the magnitude of the ICT-like band decreases during the experiment under applied voltage condition, and is associated with a prolongation of the S1/ICT-like lifetime from 8 ps to 13 ps. Furthermore, switching off the applied voltage resulted in returning to no-voltage data within about 30 min. Our results show that the amplitude of the signal associated with the ICT state can be tuned by applying an external voltage.
  •  
10.
  • Kunnus, Kristjan, et al. (författare)
  • Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The non-equilibrium dynamics of electrons and nuclei govern the function of photoactive materials. Disentangling these dynamics remains a critical goal for understanding photoactive materials. Here we investigate the photoinduced dynamics of the [Fe(bmip)2]2+ photosensitizer, where bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, with simultaneous femtosecond-resolution Fe Kα and Kβ X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS). This measurement shows temporal oscillations in the XES and XSS difference signals with the same 278 fs period oscillation. These oscillations originate from an Fe-ligand stretching vibrational wavepacket on a triplet metal-centered (3MC) excited state surface. This 3MC state is populated with a 110 fs time constant by 40% of the excited molecules while the rest relax to a 3MLCT excited state. The sensitivity of the Kα XES to molecular structure results from a 0.7% average Fe-ligand bond length shift between the 1 s and 2p core-ionized states surfaces.
  •  
11.
  • Lindh, Linnea, et al. (författare)
  • Dye-sensitized solar cells based on Fe N-heterocyclic carbene photosensitizers with improved rod-like push-pull functionality
  • 2021
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520 .- 2041-6539. ; 12:48, s. 16035-16053
  • Tidskriftsartikel (refereegranskat)abstract
    • A new generation of octahedral iron(ii)-N-heterocyclic carbene (NHC) complexes, employing different tridentate C^N^C ligands, has been designed and synthesized as earth-abundant photosensitizers for dye sensitized solar cells (DSSCs) and related solar energy conversion applications. This work introduces a linearly aligned push-pull design principle that reaches from the ligand having nitrogen-based electron donors, over the Fe(ii) centre, to the ligand having an electron withdrawing carboxylic acid anchor group. A combination of spectroscopy, electrochemistry, and quantum chemical calculations demonstrate the improved molecular excited state properties in terms of a broader absorption spectrum compared to the reference complex, as well as directional charge-transfer displacement of the lowest excited state towards the semiconductor substrate in accordance with the push-pull design. Prototype DSSCs based on one of the new Fe NHC photosensitizers demonstrate a power conversion efficiency exceeding 1% already for a basic DSSC set-up using only the I−/I3−redox mediator and standard operating conditions, outcompeting the corresponding DSSC based on the homoleptic reference complex. Transient photovoltage measurements confirmed that adding the co-sensitizer chenodeoxycholic acid helped in improving the efficiency by increasing the electron lifetime in TiO2. Time-resolved spectroscopy revealed spectral signatures for successful ultrafast (<100 fs) interfacial electron injection from the heteroleptic dyes to TiO2. However, an ultrafast recombination process results in undesirable fast charge recombination from TiO2back to the oxidized dye, leaving only 5-10% of the initially excited dyes available to contribute to a current in the DSSC. On slower timescales, time-resolved spectroscopy also found that the recombination dynamics (longer than 40 μs) were significantly slower than the regeneration of the oxidized dye by the redox mediator (6-8 μs). Therefore it is the ultrafast recombination down to fs-timescales, between the oxidized dye and the injected electron, that remains as one of the main bottlenecks to be targeted for achieving further improved solar energy conversion efficiencies in future work.
  •  
12.
  • Lindh, Linnea, et al. (författare)
  • Multifaceted Deactivation Dynamics of Fe(II) N-Heterocyclic Carbene Photosensitizers
  • 2023
  • Ingår i: Journal of Physical Chemistry A. - 1089-5639. ; 127:48, s. 10210-10222
  • Tidskriftsartikel (refereegranskat)abstract
    • Excited state dynamics of three iron(II) carbene complexes that serve as prototype Earth-abundant photosensitizers were investigated by ultrafast optical spectroscopy. Significant differences in the dynamics between the investigated complexes down to femtosecond time scales are used to characterize fundamental differences in the depopulation of triplet metal-to-ligand charge-transfer (3MLCT) excited states in the presence of energetically accessible triplet metal-centered (3MC) states. Novel insights into the full deactivation cascades of the investigated complexes include evidence of the need to revise the deactivation model for a prominent iron carbene prototype complex, a refined understanding of complex 3MC dynamics, and a quantitative discrimination between activated and barrierless deactivation steps along the 3MLCT → 3MC → 1GS path. Overall, the study provides an improved understanding of photophysical limitations and opportunities for the use of iron(II)-based photosensitizers in photochemical applications.
  •  
13.
  • Lindh, Linnea, et al. (författare)
  • Photophysics and photochemistry of iron carbene complexes for solar energy conversion and photocatalysis
  • 2020
  • Ingår i: Catalysts. - : MDPI AG. - 2073-4344. ; 10:3
  • Forskningsöversikt (refereegranskat)abstract
    • Earth-abundant first row transition metal complexes are important for the development of large-scale photocatalytic and solar energy conversion applications. Coordination compounds based on iron are especially interesting, as iron is the most common transition metal element in the Earth’s crust. Unfortunately, iron-polypyridyl and related traditional iron-based complexes generally suffer from poor excited state properties, including short excited-state lifetimes, that make them unsuitable for most light-driven applications. Iron carbene complexes have emerged in the last decade as a new class of coordination compounds with significantly improved photophysical and photochemical properties, that make them attractive candidates for a range of light-driven applications. Specific aspects of the photophysics and photochemistry of these iron carbenes discussed here include long-lived excited state lifetimes of charge transfer excited states, capabilities to act as photosensitizers in solar energy conversion applications like dye-sensitized solar cells, as well as recent demonstrations of promising progress towards driving photoredox and photocatalytic processes. Complementary advances towards photofunctional systems with both Fe(II) complexes featuring metal-to-ligand charge transfer excited states, and Fe(III) complexes displaying ligand-to-metal charge transfer excited states are discussed. Finally, we outline emerging opportunities to utilize the improved photochemical properties of iron carbenes and related complexes for photovoltaic, photoelectrochemical and photocatalytic applications.
  •  
14.
  • Lindh, Linnea, et al. (författare)
  • Side-group switching between metal-to-ligand charge-transfer and metal-centered excited state properties in iron(II) N-heterocyclic carbene complexes
  • 2024
  • Ingår i: Coordination Chemistry Reviews. - 0010-8545. ; 506
  • Forskningsöversikt (refereegranskat)abstract
    • Fe(II) N-heterocyclic carbene (NHC) complexes have emerged over the last decade as a promising class of light-harvesting complexes for a variety of photochemical applications relying on the presence of high-energy excited states of mainly charge-transfer character with excited state lifetimes of tens of picoseconds or longer. Recent spectroscopic investigations have significantly refined the understanding of some of the key prototype complexes of this kind and highlighted the subtle balance between population of triplet metal-to-ligand charge-transfer (3MLCT) and triplet metal-centered (3MC) states as a key issue to better understand and ultimately control the excited state dynamics in these complexes. To present a broader perspective on this issue, we here re-examine and discuss the excited state properties of a series of complexes with different side-groups on a common Fe NHC scaffold. Both the steady-state absorption spectrum and excited state dynamics are influenced by the side-group substitution, and the changes are rationalized based on shifting of the lowest metal-to-ligand charge-transfer (MLCT) state in energy based on the electron-withdrawing or electron-donating properties of the side-groups. Only electron-withdrawing substituents such as carboxylic acid groups ensured that the majority excited population stays in the 3MLCT state for ∼20 ps rather than rapidly converting into metal-centered (MC) states. In other complexes, the 3MLCT state survived <300 fs after which the 3MC state was populated for ∼10 ps. The transient absorption results also show that the dynamics can be switched in a simple manner by deprotonating the carboxylic acid group, which renders some of the complexes pH-sensitive. For the here discussed complexes, the results from transient absorption measurements indicate that the 3MLCT and 3MC states were close enough in energy to enable the side-group to determine the photophysics. The emerging understanding of the 3MLCT-3MC balance, as well as the nature and properties of the 3MC state in these complexes with intermediate ligand field strength is used to provide a broader fundamental perspective required to improve the ligand-design of Fe carbene complexes for issues such as to ensure a long-lived 3MLCT state.
  •  
15.
  • Müller, Carolin, et al. (författare)
  • KiMoPack : A python Package for Kinetic Modeling of the Chemical Mechanism
  • 2022
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 126:25, s. 4087-4099
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we present KiMoPack, an analysis tool for the kinetic modeling of transient spectroscopic data. KiMoPack enables a state-of-the-art analysis routine including data preprocessing and standard fitting (global analysis), as well as fitting of complex (target) kinetic models, interactive viewing of (fit) results, and multiexperiment analysis via user accessible functions and a graphical user interface (GUI) enhanced interface. To facilitate its use, this paper guides the user through typical operations covering a wide range of analysis tasks, establishes a typical workflow and is bridging the gap between ease of use for less experienced users and introducing the advanced interfaces for experienced users. KiMoPack is open source and provides a comprehensive front-end for preprocessing, fitting and plotting of 2-dimensional data that simplifies the access to a powerful python-based data-processing system and forms the foundation for a well documented, reliable, and reproducible data analysis.
  •  
16.
  • Prakash, Om, et al. (författare)
  • A Stable Homoleptic Organometallic Iron(IV) Complex
  • 2020
  • Ingår i: Chemistry - A European Journal. - : WILEY-V C H VERLAG GMBH. - 0947-6539 .- 1521-3765. ; 26:56, s. 12728-12732
  • Tidskriftsartikel (refereegranskat)abstract
    • A homoleptic organometallic Fe(IV)complex that is stable in both solution and in the solid state at ambient conditions has been synthesized and isolated as [Fe(phtmeimb)(2)](PF6)(2)(phtmeimb=[phenyl(tris(3-methylimidazolin-2-ylidene))borate](-)). This (FeN)-N-IV-heterocyclic carbene (NHC) complex was characterized by(1)H NMR, HR-MS, elemental analysis, scXRD analysis, electrochemistry, Mossbauer spectroscopy, and magnetic susceptibility. The two latter techniques unequivocally demonstrate that [Fe(phtmeimb)(2)](PF6)(2)is a triplet Fe(IV)low-spinS=1 complex in the ground state, in agreement with quantum chemical calculations. The electronic absorption spectrum of [Fe(phtmeimb)(2)](PF6)(2)in acetonitrile shows an intense absorption band in the red and near IR, due to LMCT (ligand-to-metal charge transfer) excitation. For the first time the excited state dynamics of a Fe(IV)complex was studied and revealed a approximate to 0.8 ps lifetime of the(3)LMCT excited state of [Fe(phtmeimb)(2)](PF6)(2)in acetonitrile.
  •  
17.
  • Prakash, Om, et al. (författare)
  • How Rigidity and Conjugation of Bidentate Ligands Affect the Geometry and Photophysics of Iron N-Heterocyclic Complexes : A Comparative Study
  • 2024
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 63:10, s. 4461-4473
  • Tidskriftsartikel (refereegranskat)abstract
    • Two iron complexes featuring the bidentate, nonconjugated N-heterocyclic carbene (NHC) 1,1′-methylenebis(3-methylimidazol-2-ylidene) (mbmi) ligand, where the two NHC moieties are separated by a methylene bridge, have been synthesized to exploit the combined influence of geometric and electronic effects on the ground- and excited-state properties of homoleptic FeIII-hexa-NHC [Fe(mbmi)3](PF6)3 and heteroleptic FeII-tetra-NHC [Fe(mbmi)2(bpy)](PF6)2 (bpy = 2,2′-bipyridine) complexes. They are compared to the reported FeIII-hexa-NHC [Fe(btz)3](PF6)3 and FeII-tetra-NHC [Fe(btz)2(bpy)](PF6)2 complexes containing the conjugated, bidentate mesoionic NHC ligand 3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene) (btz). The observed geometries of [Fe(mbmi)3](PF6)3 and [Fe(mbmi)2(bpy)](PF6)2 are evaluated through L-Fe-L bond angles and ligand planarity and compared to those of [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The FeII/FeIII redox couples of [Fe(mbmi)3](PF6)3 (−0.38 V) and [Fe(mbmi)2(bpy)](PF6)2 (−0.057 V, both vs Fc+/0) are less reducing than [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The two complexes show intense absorption bands in the visible region: [Fe(mbmi)3](PF6)3 at 502 nm (ligand-to-metal charge transfer, 2LMCT) and [Fe(mbmi)2(bpy)](PF6)2 at 410 and 616 nm (metal-to-ligand charge transfer, 3MLCT). Lifetimes of 57.3 ps (2LMCT) for [Fe(mbmi)3](PF6)3 and 7.6 ps (3MLCT) for [Fe(mbmi)2(bpy)](PF6)2 were probed and are somewhat shorter than those for [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. [Fe(mbmi)3](PF6)3 exhibits photoluminescence at 686 nm (2LMCT) in acetonitrile at room temperature with a quantum yield of (1.2 ± 0.1) × 10-4, compared to (3 ± 0.5)
  •  
18.
  • Prakash, Om, et al. (författare)
  • Photophysical Integrity of the Iron(III) Scorpionate Framework in Iron(III)-NHC Complexes with Long-Lived 2LMCT Excited States
  • 2022
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 61:44, s. 17515-17526
  • Tidskriftsartikel (refereegranskat)abstract
    • Fe(III) complexes with N-heterocyclic carbene (NHC) ligands belong to the rare examples of Earth-abundant transition metal complexes with long-lived luminescent charge-transfer excited states that enable applications as photosensitizers for charge separation reactions. We report three new hexa-NHC complexes of this class: [Fe(brphtmeimb)2]PF6 (brphtmeimb = [(4-bromophenyl)tris(3-methylimidazol-2-ylidene)borate]–, [Fe(meophtmeimb)2]PF6 (meophtmeimb = [(4-methoxyphenyl)tris(3-methylimidazol-2-ylidene)borate]–, and [Fe(coohphtmeimb)2]PF6 (coohphtmeimb = [(4-carboxyphenyl)tris(3-methylimidazol-2-ylidene)borate]–. These were derived from the parent complex [Fe(phtmeimb)2]PF6 (phtmeimb = [phenyltris(3-methylimidazol-2-ylidene)borate]– by modification with electron-withdrawing and electron-donating substituents, respectively, at the 4-phenyl position of the ligand framework. All three Fe(III) hexa-NHC complexes were characterized by NMR spectroscopy, high-resolution mass spectroscopy, elemental analysis, single crystal X-ray diffraction analysis, electrochemistry, Mößbauer spectroscopy, electronic spectroscopy, magnetic susceptibility measurements, and quantum chemical calculations. Their ligand-to-metal charge-transfer (2LMCT) excited states feature nanosecond lifetimes (1.6–1.7 ns) and sizable emission quantum yields (1.7–1.9%) through spin-allowed transition to the doublet ground state (2GS), completely in line with the parent complex [Fe(phtmeimb)2]PF6 (2.0 ns and 2.1%). The integrity of the favorable excited state characteristics upon substitution of the ligand framework demonstrates the robustness of the scorpionate motif that tolerates modifications in the 4-phenyl position for applications such as the attachment in molecular or hybrid assemblies.
  •  
19.
  • Prakash, Om, et al. (författare)
  • Tailoring the Photophysical Properties of a Homoleptic Iron(II) Tetra N-Heterocyclic Carbene Complex by Attaching an Imidazolium Group to the (C∧N∧C) Pincer Ligand─A Comparative Study
  • 2024
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 63:6, s. 2909-2918
  • Tidskriftsartikel (refereegranskat)abstract
    • We here report the synthesis of the homoleptic iron(II) N-heterocyclic carbene (NHC) complex [Fe(miHpbmi)2](PF6)4 (miHpbmi = 4-((3-methyl-1H-imidazolium-1-yl)pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) and its electrochemical and photophysical properties. The introduction of the π-electron-withdrawing 3-methyl-1H-imidazol-3-ium-1-yl group into the NHC ligand framework resulted in stabilization of the metal-to-ligand charge transfer (MLCT) state and destabilization of the metal-centered (MC) states. This resulted in an improved excited-state lifetime of 16 ps compared to the 9 ps for the unsubstituted parent compound [Fe(pbmi)2](PF6)2 (pbmi = (pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) as well as a stronger MLCT absorption band extending more toward the red spectral region. However, compared to the carboxylic acid derivative [Fe(cpbmi)2](PF6)2 (cpbmi = 1,1′-(4-carboxypyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)), the excited-state lifetime of [Fe(miHpbmi)2](PF6)4 is the same, but both the extinction and the red shift are more pronounced for the former. Hence, this makes [Fe(miHpbmi)2](PF6)4 a promising pH-insensitive analogue of [Fe(cpbmi)2](PF6)2. Finally, the excited-state dynamics of the title compound [Fe(miHpbmi)2](PF6)4 was investigated in solvents with different viscosities, however, showing very little dependency of the depopulation of the excited states on the properties of the solvent used.
  •  
20.
  • Ringström, Rasmus, 1993, et al. (författare)
  • Triplet Formation in a 9,10-Bis(phenylethynyl)anthracene Dimer and Trimer Occurs by Charge Recombination Rather than Singlet Fission
  • 2023
  • Ingår i: Journal of Physical Chemistry Letters. - 1948-7185. ; 14:35, s. 7897-7902
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an experimental study investigating the solvent-dependent dynamics of a 9,10-bis(phenylethynyl)anthracene monomer, dimer, and trimer. Using transient absorption spectroscopy, we have discovered that triplet excited state formation in the dimer and trimer molecules in polar solvents is a consequence of charge recombination subsequent to symmetry-breaking charge separation rather than singlet fission. Total internal reflection emission measurements of the monomer demonstrate that excimer formation serves as the primary decay pathway at a high concentration. In the case of highly concentrated solutions of the trimer, we observe evidence of triplet formation without the prior formation of a charge-separated state. We postulate that this is attributed to the formation of small aggregates, suggesting that oligomers mimicking the larger chromophore counts in crystals could potentially facilitate singlet fission. Our experimental study sheds light on the intricate dynamics of the 9,10-bis(phenylethynyl)anthracene system, elucidating the role of solvent- and concentration-dependent factors for triplet formation and charge separation.
  •  
21.
  • Rosemann, Nils W., et al. (författare)
  • Competing dynamics of intramolecular deactivation and bimolecular charge transfer processes in luminescent Fe(iii) N-heterocyclic carbene complexes
  • 2023
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520 .- 2041-6539. ; 14:13, s. 3569-3579
  • Tidskriftsartikel (refereegranskat)abstract
    • Steady state and ultrafast spectroscopy on [FeIII(phtmeimb)2]PF6 (phtmeimb = phenyl(tris(3-methylimidazol-2-ylidene))borate) was performed over a broad range of temperatures. The intramolecular deactivation dynamics of the luminescent doublet ligand-to-metal charge-transfer (2LMCT) state was established based on Arrhenius analysis, indicating the direct deactivation of the 2LMCT state to the doublet ground state as a key limitation to the lifetime. In selected solvent environments photoinduced disproportionation generating short-lived Fe(iv) and Fe(ii) complex pairs that subsequently undergo bimolecular recombination was observed. The forward charge separation process is found to be temperature-independent with a rate of ∼1 ps−1. Subsequent charge recombination takes place in the inverted Marcus region with an effective barrier of 60 meV (483 cm−1). Overall, the photoinduced intermolecular charge separation efficiently outcompetes the intramolecular deactivation over a broad range of temperatures, highlighting the potential of [FeIII(phtmeimb)2]PF6 to perform photocatalytic bimolecular reactions.
  •  
22.
  • Rosemann, Nils W., et al. (författare)
  • Tracing the Full Bimolecular Photocycle of Iron(III)-Carbene Light Harvesters in Electron-Donating Solvents
  • 2020
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 142:19, s. 8565-8569
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoinduced bimolecular charge transfer processes involving the iron(III) N-heterocyclic carbene (FeNHC) photosensitizer [Fe(phtmeimb)2]+ (phtmeimb = phenyltris(3-methyl-imidazolin-2-ylidene)borate) and triethylamine as well as N,N-dimethylaniline donors have been studied using optical spectroscopy. The full photocycle of charge separation and recombination down to ultrashort time scales was studied by investigating the excited-state dynamics up to high quencher concentrations. The unconventional doublet ligand-to-metal charge transfer (2LMCT) photoactive excited state exhibits donor-dependent charge separation rates of up to 1.25 ps-1 that exceed the rates found for typical ruthenium-based systems and are instead more similar to results reported for organic sensitizers. The ultrafast charge transfer probed at high electron donor concentrations outpaces the solvent dynamics and goes beyond the classical Marcus electron transfer regime. Poor photoproduct yields are explained by donor-independent, fast charge recombination with rates of ∼0.2 ps-1, thus inhibiting cage escape and photoproduct formation. This study thus shows that the ultimate bottlenecks for bimolecular photoredox processes involving these FeNHC photosensitizers can only be determined from the ultrafast dynamics of the full photocycle, which is of particular importance when the bimolecular charge transfer processes are not limited by the intrinsic excited-state lifetime of the photosensitizer.
  •  
23.
  • Schmid, Lucius, et al. (författare)
  • Borylation in the Second Coordination Sphere of FeIICyanido Complexes and Its Impact on Their Electronic Structures and Excited-State Dynamics
  • 2022
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 61:40, s. 15853-15863
  • Tidskriftsartikel (refereegranskat)abstract
    • Second coordination sphere interactions of cyanido complexes with hydrogen-bonding solvents and Lewis acids are known to influence their electronic structures, whereby the non-labile attachment of B(C6F5)3resulted in several particularly interesting new compounds lately. Here, we investigate the effects of borylation on the properties of two FeIIcyanido complexes in a systematic manner by comparing five different compounds and using a range of experimental techniques. Electrochemical measurements indicate that borylation entails a stabilization of the FeII-based t2g-like orbitals by up to 1.65 eV, and this finding was confirmed by Mössbauer spectroscopy. This change in the electronic structure has a profound impact on the UV-vis absorption properties of the borylated complexes compared to the non-borylated ones, shifting their metal-to-ligand charge transfer (MLCT) absorption bands over a wide range. Ultrafast UV-vis transient absorption spectroscopy provides insight into how borylation affects the excited-state dynamics. The lowest metal-centered (MC) excited states become shorter-lived in the borylated complexes compared to their cyanido analogues by a factor of ∼10, possibly due to changes in outer-sphere reorganization energies associated with their decay to the electronic ground state as a result of B(C6F5)3attachment at the cyanido N lone pair.
  •  
24.
  • Tatsuno, Hideyuki, et al. (författare)
  • Hot Branching Dynamics in a Light-Harvesting Iron Carbene Complex Revealed by Ultrafast X-ray Emission Spectroscopy
  • 2020
  • Ingår i: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 59:1, s. 364-372
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron N-heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub-ps X-ray spectroscopy study of an FeIINHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3MLCT state, from the initially excited 1MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3MC state, in competition with vibrational relaxation and cooling to the relaxed 3MLCT state. The relaxed 3MLCT state then decays much more slowly (7.6 ps) to the 3MC state. The 3MC state is rapidly (2.2 ps) deactivated to the ground state. The 5MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition-metal complexes for similar ultrafast decays to optimize photochemical performance.
  •  
25.
  • Toupalas, Georgios, et al. (författare)
  • Tuning Photoinduced Electron Transfer in POM-Bodipy Hybrids by Controlling the Environment : Experiment and Theory
  • 2021
  • Ingår i: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 60:12, s. 6518-6525
  • Tidskriftsartikel (refereegranskat)abstract
    • The optical and electrochemical properties of a series of polyoxometalate (POM) oxoclusters decorated with two bodipy (boron-dipyrromethene) light-harvesting units were examined. Evaluated here in this polyanionic donor-acceptor system is the effect of the solvent and associated counterions on the intramolecular photoinduced electron transfer. The results show that both solvents and counterions have a major impact upon the energy of the charge-transfer state by modifying the solvation shell around the POMs. This modification leads to a significantly shorter charge separation time in the case of smaller counterion and slower charge recombination in a less polar solvent. These results were rationalized in terms of Marcus theory and show that solvent and counterion both affect the driving force for photoinduced electron transfer and the reorganization energy. This was corroborated with theoretical investigations combining DFT and molecular dynamics simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy