SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chabes Andrei Professor) srt2:(2010-2014)"

Sökning: WFRF:(Chabes Andrei Professor) > (2010-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kumar, Dinesh, 1981- (författare)
  • dNTPs : the alphabet of life
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • From microscopic bacteria to the giant whale, every single living organism on Earth uses the same language of life: DNA. Deoxyribonucleoside triphosphates––dNTPs (dATP, dTTP, dGTP, and dCTP)––are the building blocks of DNA and are therefore the “alphabet of life”. A balanced supply of dNTPs is essential for integral DNA transactions such as faithful genome duplication and repair. The enzyme ribonucleotide reductase (RNR) not only synthesizes all four dNTPs but also primarily maintains the crucial individual concentration of each dNTP in a cell. In this thesis we investigated what happens if the crucial balanced supply of dNTPs is disrupted, addressing whether a cell has a mechanism to detect imbalanced dNTP pools and whether all pool imbalances are equally mutagenic. To address these questions, we introduced single amino acid substitutions into loop 2 of the allosteric specificity site of Saccharomyces cerevisiae RNR and obtained a collection of yeast strains with different but defined dNTP pool imbalances. These results directly confirmed that the loop 2 is the structural link between the substrate specificity and effector binding sites of RNR. We were surprised to observe that mutagenesis was enhanced even in a strain with mildly imbalanced dNTP pools, despite the availability of the two major replication error correction mechanisms: proofreading and mismatch repair. However, the mutagenic potential of different dNTP pool imbalances did not directly correlate with their severity, and the locations of the mutations in a strain with elevated dTTP and dCTP were completely different from those in a strain with elevated dATP and dGTP. We then investigated, whether dNTP pool imbalances interfere with cell cycle progression and if they are detected by the S-phase checkpoint, a genome surveillance mechanism activated in response to DNA damage or replication blocks. The S-phase checkpoint was activated by the depletion of one or more dNTPs. In contrast, when none of the dNTP pools was limiting for DNA replication, even extreme and mutagenic dNTP pool imbalances did not activate the S-phase checkpoint and did not interfere with the cell cycle progression. We also observed an interesting mutational strand bias in one of the mutant rnr1 strains suggesting that the S-phase checkpoint may selectively prevent formation of replication errors during leading strand replication. We further used these strains to study the mechanisms by which dNTP pool imbalances induce genome instability. In addition, we discovered that a high dNTP concentration allows replicative DNA polymerases to bypass certain DNA lesions, which are difficult to bypass at normal dNTP concentrations. Our results broaden the role of dNTPs beyond ‘dNTPs as the building blocks’ and suggest that dNTPs are not only the building blocks of DNA but also that their concentrations in a cell have regulatory implications for maintaining genomic integrity. This is important as all cancers arise as a result of some kind of genomic abnormality.
  •  
2.
  • Tsaponina, Olga, 1978- (författare)
  • Regulation of ribonucleotide reductase and the role of dNTP pools in genomic stability in yeast Saccharomyces cerevisiae
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Every living organism is programmed to reproduce and to pass genetic information to descendants. The information has to be carefully copied and accurately transferred to the next generation.  Therefore organisms have developed the network of conserved mechanisms to survey the protection and precise transfer of the genetic information. Such mechanisms are called checkpoints and they monitor the correct execution of different cell programs. The DNA damage and the replication blocks are surveyed by the conserved Mec1-Rad53 (human ATM/ATR and Chk2, respectively) protein kinase cascade. Mec1 and Rad53 are essential for survival and when activated orchestrate the multiple cellular responses, including the activation of the ribonucleotide reductase (RNR), to the genotoxic stress. RNR is an enzyme producing all four dNTPs - the building blocks of the DNA - and is instrumental for the maintenance both proper concentration and balance of each of dNTPs. The appropriate concentration of the dNTPs should be strictly regulated since inadequate dNTP production can impede many cellular processes and lead to higher mutation rates and genome instability. Hence RNR activity is regulated at many levels, including allosteric and transcriptional regulation and the inhibition at protein level. In our research, we addressed the question of the transcriptional regulation of RNR and the consequences of dNTP malproduction in the terms of the genomic stability. In yeast S. cerevisiae, four genes encode RNR: 2 genes encode a large subunit (RNR1 and RNR3) and 2 genes encode a small subunit (RNR2 and RNR4). All 4 genes are DNA-damage inducible: transcription of RNR2, RNR3 and RNR4 is regulated via Mec1-Rad53-Dun1 pathway by targeting the transcriptional repressor Crt1 (Rfx1) for degradation; on the contrary, RNR1 gene promoter does not contain Crt1-binding sites and is not regulated through the Mec1-Rad53-Dun1 pathway. Instead, we show that intrastrand cross (X)-link recognition protein (Ixr1) is required for the proper transcription of the RNR1 gene and maintenance of the dNTP pools both during unperturbed cell cycle and after the DNA damage. Thus, we identify the novel regulator of the RNR1 transcription. Next, we show that the depletion of dNTP pools negatively affects genome stability in the hypomorphic mec1 mutants: the hyper-recombination phenotype in those mutants correlates with low dNTP levels. By introducing even lower dNTP levels the hyper-recombination increased even further and conversely all the hyper-recombination phenotypes were suppressed by artificial elevation of dNTP levels. In conclusion, we present Ixr1 as a novel regulator of the RNR activity and provide the evidence of role of dNTP concentration in the genome stability.
  •  
3.
  • Wiberg, Jörgen, 1982- (författare)
  • Mechanisms controlling DNA damage survival and mutation rates in budding yeast
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • All living organisms are made of cells, within which genetic information is stored on long strands of deoxyribonucleic acid (DNA). The DNA encodes thousands of different genes and provides the blueprint for all of the structures and activities occurring within the cell. The building blocks of DNA are the four deoxyribonucleotides, dATP, dGTP, dTTP, and dCTP, which are collectively referred to as dNTPs. The key enzyme in the production of dNTPs is ribonucleotide reductase (RNR). In the budding yeast Saccharomyces cerevisiae, the concentrations of the individual dNTPs are not equal and it is primarily RNR that maintains this balance. Maintenance of the dNTP pool balance is critical for accurate DNA replication and DNA repair since elevated and/or imbalanced dNTP concentrations increase the mutation rate and can ultimately lead to genomic instability and cancer. In response to DNA damage, the overall dNTP concentration in S. cerevisiae increases. Cell survival rates increase as a result of the elevated concentration of dNTPs, but the cells also suffer from a concomitant increase in mutation rates. When the replication machinery encounters DNA damage that it cannot bypass, the replication fork stalls and recruits specialized translesion synthesis (TLS) polymerases that bypass the damage so that replication can continue. We hypothesized that elevated dNTP levels in response to DNA damage may allow the TLS polymerases to more efficiently bypass DNA damage. To explore this possibility, we deleted all known TLS polymerases in a yeast strain in which we could artificially increase the dNTP concentrations. Surprisingly, even though all TLS polymerases had been deleted, elevated dNTP concentrations led to increased cell survival after DNA damage. These results suggest that replicative DNA polymerases may be involved in the bypass of certain DNA lesions under conditions of elevated dNTPs. We confirmed this hypothesis in vitro by demonstrating that high dNTP concentrations result in an increased efficiency in the bypass of certain DNA lesions by DNA polymerase epsilon, a replicative DNA polymerase not normally associated with TLS activity. We asked ourselves if it would be possible to create yeast strains with imbalanced dNTP concentrations in vivo, and, if so, would these imbalances be recognized by the checkpoint control mechanisms in the cell. To address these questions, we focused on the highly conserved loop2 of the allosteric specificity site of yeast Rnr1p. We introduced several mutations into RNR1-loop2 that resulted in changes in the amino acid sequence of the protein. Each of the rnr1-loop2 mutation strains obtained had different levels of individual dNTPs relative to the others. Interestingly, all of the imbalanced dNTP concentrations led to increased mutation rates, but these mutagenic imbalances did not activate the S-phase checkpoint unless one or several dNTPs were present at concentrations that were too low to sustain DNA replication. We were able to use these mutant yeast strains to successfully correlate amino acid substitutions within loop2 of Rnr1p to specific ratios of dNTP concentrations in the cells. We also demonstrated that specific imbalances between the individual dNTP levels result in unique mutation spectra. These mutation spectra suggest that the mutagenesis that results from imbalanced dNTP pools is due to a decrease in fidelity of the replicative DNA polymerases at specific DNA sequences where they are more likely to make a mistake. The mutant rnr1-loop2 strains that we have created with defined dNTP pool imbalances will be of great value for in vivo studies of polymerase fidelity, translesion synthesis by specialized DNA polymerases, and lesion recognition by the DNA repair machinery.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy