SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Charbe Nitin B.) "

Search: WFRF:(Charbe Nitin B.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aljabali, Alaa A. A., et al. (author)
  • The viral capsid as novel nanomaterials for drug delivery
  • 2021
  • In: Future Science OA. - : Future Science Ltd. - 2056-5623. ; 7:9
  • Research review (peer-reviewed)abstract
    • The purpose of this review is to highlight recent scientific developments and provide an overview of virus self-assembly and viral particle dynamics. Viruses are organized supramolecular structures with distinct yet related features and functions. Plant viruses are extensively used in biotechnology, and virus-like particulate matter is generated by genetic modification. Both provide a material-based means for selective distribution and delivery of drug molecules. Through surface engineering of their capsids, virus-derived nanomaterials facilitate various potential applications for selective drug delivery. Viruses have significant implications in chemotherapy, gene transfer, vaccine production, immunotherapy and molecular imaging. Lay abstract: The purpose of this review is to highlight recent scientific developments and provide an overview of virus self-assembly and viral particle dynamics. Viruses are organized supramolecular structures with distinct yet related features and functions. Plant viruses are extensively used in biotechnology, and virus-like particulate matter is generated by genetic modification. Both provide a material-based means for selective distribution and delivery of drug molecules. Through surface engineering of their capsids, virus-derived nanomaterials facilitate various potential applications for selective drug delivery. Viruses have significant implications in chemotherapy, gene transfer, vaccine production, immunotherapy and molecular imaging. Here we performed a comprehensive database search to review findings in this area, demonstrating that viral nanostructures possess unique properties that make them ideal for applications in diagnostics, cell labeling, contrasting agents and drug delivery structures.
  •  
2.
  • Shahcheraghi, Seyed H., et al. (author)
  • Gene Therapy for Neuropsychiatric Disorders : Potential Targets and Tools
  • 2023
  • In: CNS & Neurological Disorders. - : Bentham Science Publishers. - 1871-5273 .- 1996-3181. ; 22:1, s. 51-65
  • Research review (peer-reviewed)abstract
    • Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
  •  
3.
  • Shahcheraghi, Seyed Hossein, et al. (author)
  • Overview of key molecular and pharmacological targets for diabetes and associated diseases
  • 2021
  • In: Life Sciences. - : Elsevier. - 0024-3205 .- 1879-0631. ; 278
  • Journal article (peer-reviewed)abstract
    • Diabetes epidemiological quantities are demonstrating one of the most important communities' health worries. The essential diabetic difficulties are including cardiomyopathy, nephropathy, inflammation, and retinopathy. Despite developments in glucose decreasing treatments and drugs, these diabetic complications are still ineffectively reversed or prohibited. Several signaling and molecular pathways are vital targets in the new therapies of diabetes. This review assesses the newest researches about the key molecules and signaling pathways as targets of molecular pharmacology in diabetes and diseases related to it for better treatment based on molecular sciences. The disease is not cured by current pharmacological strategies for type 2 diabetes. While several drug combinations are accessible that can efficiently modulate glycemia and mitigate long-term complications, these agents do not reverse pathogenesis, and in practice, they are not established to modify the patient's specific molecular profiling. Therapeutic companies have benefited from human genetics. Genome exploration, which is agnostic to the information that exists, has revealed tens of loci that impact glycemic modulation. The physiological report has begun to examine subtypes of diseases, illustrate heterogeneity and propose biochemical therapeutic pathways.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view