SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Colaco M) srt2:(2020-2024)"

Sökning: WFRF:(Colaco M) > (2020-2024)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Sukumaran Nair, A., et al. (författare)
  • TaskMUSTER : a comprehensive analysis of task parameters for mixed criticality automotive systems
  • 2022
  • Ingår i: Sadhana (Bangalore). - : Springer. - 0256-2499 .- 0973-7677. ; 47:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Automotive computing platforms are becoming complex and steadily being transformed into mixed criticality systems (MCS) with connectivity to the user, infrastructure and other vehicles. Due to the safety critical and real time nature of such systems, this transition emphasizes careful selection of task models, task scheduling mechanisms and software development practices to ensure predictability. Though there exists a wealth of research results on MCS, often the non-uniform descriptions and non-comprehensive nature of task parameters become hindrances to the designers and researchers, thus limiting their wider applicability. In this context, we carry out a comprehensive analysis of task parameters for MCS and propose a task parameter aggregator called TaskMUSTER with focus on automotive domain, specifically on the controlling domain software applications like power steering, brake systems and power train. TaskMSUTER aims to provide a unified view of various task model parameters in terms of important attributes related to resource & communication, energy, fault-tolerance, mode change, OS overheads and parallel processing. This work also provides Backus-Naur form grammar and railroad diagram of TaskMUSTER. The usability analysis of TaskMUSTER and comparisons with well-known task model propositions are carried out using an automotive wake-up controller task set. The results justify the suitability of TaskMUSTER for designing safety certifiable automotive MCS. Overall, TaskMUSTER acts as a comprehensive and design friendly handbook for researchers and designers in the mixed criticality automotive controlling domain. 
  •  
5.
  • Weaver, P. P.E., et al. (författare)
  • Assessing plume impacts caused by polymetallic nodule mining vehicles
  • 2022
  • Ingår i: Marine Policy. - 0308-597X. ; 139
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep-sea mining may be just a few years away and yet society is struggling to assess the positive aspects, such as increasing the supply of metals for battery production to fuel the green revolution, versus the potentially large environmental impacts. Mining of polymetallic (manganese) nodules from the deep ocean is likely to be the first mineral resource targeted and will involve direct impacts to hundreds of km2 of seabed per mine per year. However, the mining activity will also cause the generation of large sediment plumes that will spread away from the mine site and have both immediate and long-term effects over much wider areas. We discuss what the impacts of plumes generated near the seabed by mining vehicles may be and how they might be measured in such challenging environments. Several different mining vehicles are under development around the world and depending on their design some may create larger plumes than others. We discuss how these vehicles could be compared so that better engineering designs could be selected and to encourage innovation in dealing with plume generation and spread. These considerations will aid the International Seabed Authority (ISA) that has the task of regulating mining activities in much of the deep sea in its commitment to promote the Best Available Technology (BAT) and Best Environmental Practice (BEP).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy