SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cosentino Giuliana 1990) "

Sökning: WFRF:(Cosentino Giuliana 1990)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barnes, A. T., et al. (författare)
  • ALMA-IRDC: dense gas mass distribution from cloud to core scales
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:3, s. 4601-4626
  • Tidskriftsartikel (refereegranskat)abstract
    • Infrared dark clouds (IRDCs) are potential hosts of the elusive early phases of high mass star formation (HMSF). Here, we conduct an in-depth analysis of the fragmentation properties of a sample of 10 IRDCs, which have been highlighted as some of the best candidates to study HMSF within the Milky Way. To do so, we have obtained a set of large mosaics covering these IRDCs with Atacama Large Millimeter/submillimeter Array (ALMA) at Band 3 (or 3 mm). These observations have a high angular resolution (similar to 3 arcsec; similar to 0.05 pc), and high continuum and spectral line sensitivity (similar to 0.15 mJy beam(-1) and similar to 0.2 K per 0.1 km s(-1) channel at the N2H+ (1 - 0) transition). From the dust continuum emission, we identify 96 cores ranging from low to high mass (M = 3.4-50.9M(circle dot)) that are gravitationally bound (alpha(vir) = 0.3-1.3) and which would require magnetic field strengths of B = 0.3-1.0 mG to be in virial equilibrium. We combine these results with a homogenized catalogue of literature cores to recover the hierarchical structure within these clouds over four orders of magnitude in spatial scale (0.01-10 pc). Using supplementary observations at an even higher angular resolution, we find that the smallest fragments (<0.02 pc) within this hierarchy do not currently have the mass and/or the density required to form high-mass stars. None the less, the new ALMA observations presented in this paper have facilitated the identification of 19 (6 quiescent and 13 star-forming) cores that retain >16M(circle dot) without further fragmentation. These high-mass cores contain trans-sonic non-thermal motions, are kinematically sub-virial, and require moderate magnetic field strengths for support against collapse. The identification of these potential sites of HMSF represents a key step in allowing us to test the predictions from high-mass star and cluster formation theories.
  •  
2.
  • Barnes, Ashley T., et al. (författare)
  • Mother of dragons: A massive, quiescent core in the dragon cloud (IRDC G028.37+00.07)
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Core accretion models of massive star formation require the existence of massive, starless cores within molecular clouds. Yet, only a small number of candidates for such truly massive, monolithic cores are currently known. Aims. Here we analyse a massive core in the well-studied infrared-dark cloud (IRDC) called the dragon clouda'(also known as G028.37+00.07 or Cloud Ca). This core (C2c1) sits at the end of a chain of a roughly equally spaced actively star-forming cores near the center of the IRDC. Methods. We present new high-angular-resolution 1 mm ALMA dust continuum and molecular line observations of the massive core. Results. The high-angular-resolution observations show that this region fragments into two cores, C2c1a and C2c1b, which retain significant background-subtracted masses of 23 M· and 2 M· (31 M· and 6 M· without background subtraction), respectively. The cores do not appear to fragment further on the scales of our highest-angular-resolution images (0.2 , 0.005 pc ∼ 1000 AU). We find that these cores are very dense (nH2 > 106 cm-3) and have only trans-sonic non-thermal motions ( 3s ∼ 1). Together the mass, density, and internal motions imply a virial parameter of
  •  
3.
  • Cosentino, Giuliana, 1990, et al. (författare)
  • Deuterium fractionation across the infrared-dark cloud G034.77-00.55 interacting with the supernova remnant W44
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova remnants (SNRs) may regulate star formation in galaxies. For example, SNR-driven shocks may form new molecular gas or compress pre-existing clouds and trigger the formation of new stars. Aims. To test this scenario, we measured the deuteration of N2H+, DNfrac 2H+- a well-studied tracer of pre-stellar cores - across the infrared-dark cloud (IRDC) G034.77-00.55, which is known to be experiencing a shock interaction with the SNR W44. Methods. We use N2H+ and N2D+ J = 1-0 single pointing observations obtained with the 30m antenna at the Instituto de Radioastronomia Millimetrica to infer DN2H+ frac towards five positions across the cloud, namely a massive core, different regions across the shock front, a dense clump, and ambient gas. Results. We find DN2H+ frac in the range 0.03-0.1, which is several orders of magnitude larger than the cosmic D/H ratio (∼10-5). The DN2H+ frac across the shock front is enhanced by more than a factor of 2 (DNfrac 2H+∼ 0.05-0.07) with respect to the ambient gas (=0.03) and similar to that measured generally in pre-stellar cores. Indeed, in the massive core and dense clump regions of this IRDC we measure DN2H+ frac ∼ 0.1.
  •  
4.
  • Cosentino, Giuliana, 1990, et al. (författare)
  • Negative and positive feedback from a supernova remnant with SHREC. a detailed study of the shocked gas in IC443
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 511:1, s. 953-963
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova remnants (SNRs) contribute to regulate the star formation efficiency and evolution of galaxies. As they expand into the interstellar medium (ISM), they transfer vast amounts of energy and momentum that displace, compress, and heat the surrounding material. Despite the extensive work in galaxy evolution models, it remains to be observationally validated to what extent the molecular ISM is affected by the interaction with SNRs. We use the first results of the ESO-ARO Public Spectroscopic Survey SHREC to investigate the shock interaction between the SNR IC443 and the nearby molecular clump G. We use high-sensitivity SiO(2-1) and (HCO+)-C-13 (1-0) maps obtained by SHREC together with SiO(1-0) observations obtained with the 40-m telescope at the Yebes Observatory. We find that the bulk of the SiO emission is arising from the ongoing shock interaction between IC443 and clump G. The shocked gas shows a well-ordered kinematic structure, with velocities blue-shifted with respect to the central velocity of the SNR, similar to what observed towards other SNR-cloud interaction sites. The shock compression enhances the molecular gas density, n(H-2), up to >10(5) cm(-3), a factor of >10 higher than the ambient gas density and similar to values required to ignite star formation. Finally, we estimate that up to 50 per cent of the momentum injected by IC443 is transferred to the interacting molecular material. Therefore, the molecular ISM may represent an important momentum carrier in sites of SNR-cloud interactions.
  •  
5.
  • Fedriani, Rubén, 1991, et al. (författare)
  • The SOFIA Massive (SOMA) Star Formation Survey. IV. Isolated Protostars
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 942:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present similar to 10-40 mu m SOFIA-FORCAST images of 11 isolated protostars as part of the SOFIA Massive (SOMA) Star Formation Survey, with this morphological classification based on 37 mu m imaging. We develop an automated method to define source aperture size using the gradient of its background-subtracted enclosed flux and apply this to build spectral energy distributions (SEDs). We fit the SEDs with radiative transfer models, developed within the framework of turbulent core accretion (TCA) theory, to estimate key protostellar properties. Here, we release the sedcreator python package that carries out these methods. The SEDs are generally well fitted by the TCA models, from which we infer initial core masses M ( c ) ranging from 20-430 M (circle dot), clump mass surface densities sigma(cl) similar to 0.3-1.7 g cm(-2), and current protostellar masses m (*) similar to 3-50 M (circle dot). From a uniform analysis of the 40 sources in the full SOMA survey to date, we find that massive protostars form across a wide range of clump mass surface density environments, placing constraints on theories that predict a minimum threshold sigma(cl) for massive star formation. However, the upper end of the m (*)-sigma(cl) distribution follows trends predicted by models of internal protostellar feedback that find greater star formation efficiency in higher sigma(cl) conditions. We also investigate protostellar far-IR variability by comparison with IRAS data, finding no significant variation over an similar to 40 yr baseline.
  •  
6.
  • Fontani, F., et al. (författare)
  • ALMA-IRDC - II. First high-angular resolution measurements of the N-14/N-15 ratio in a large sample of infrared-dark cloud cores
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:3, s. 4320-4335
  • Tidskriftsartikel (refereegranskat)abstract
    • The N-14/N-15 ratio in molecules exhibits a large variation in star-forming regions, especially when measured from N2H+ isotopologues. However, there are only a few studies performed at high-angular resolution. We present the first interferometric survey of the N-14/N-15 ratio in N2H+ obtained with Atacama Large Millimeter Array observations towards four infrared-dark clouds harbouring 3 mm continuum cores associated with different physical properties. We detect (NNH+)-N-15 (1-0) in of the cores, depending on the host cloud. The N-14/N-15 values measured towards the millimetre continuum cores range from a minimum of similar to 80 up to a maximum of similar to 400. The spread of values is narrower than that found in any previous single-dish survey of high-mass star-forming regions and than that obtained using the total power data only. This suggests that the N-14/N-15 ratio is on average higher in the diffuse gaseous envelope of the cores and stresses the need for high-angular resolution maps to measure correctly the N-14/N-15 ratio in dense cores embedded in IRDCs. The average N-14/N-15 ratio of similar to 210 is also lower than the interstellar value at the Galactocentric distance of the clouds (similar to 300-330), although the sensitivity of our observations does not allow us to unveil N-14/N-15 ratios higher than similar to 400. No clear trend is found between the N-14/N-15 ratio and the core physical properties. We find only a tentative positive trend between N-14/N-15 and H-2 column density. However, firmer conclusions can be drawn only with higher sensitivity measurements.
  •  
7.
  • Gorai, Prasanta, 1991, et al. (författare)
  • Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05
  • 2024
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 960:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from Atacama Large Millimeter/submillimeter Array 1.3 mm observations with a resolution of 0.″2 (∼1000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., H2CO, CH3OH, CH3OCH3), sulfur-bearing (SO2, H2S), and nitrogen-bearing (e.g., HNCO, NH2CHO, C2H3CN, C2H5CN) molecules. We discuss their spatial distributions, physical conditions, correlation between different species, and possible chemical origins. In the central region near the protostar, we identify three hot molecular cores (HMCs). HMC1 is part of a millimeter continuum ring-like structure, is closest in projection to the protostar, has the highest temperature of ∼300 K, and shows the most line-rich spectra. HMC2 is on the other side of the ring, has a temperature of ∼250 K, and is of intermediate chemical complexity. HMC3 is further away, ∼3000 au in projection, cooler (∼70 K), and is the least line-rich. The three HMCs have similar mass surface densities (∼10 g cm−2), number densities (n H ∼ 109 cm−3), and masses of a few solar masses. The total gas mass in the cores and in the region out to 3000 au is ∼25 M ⊙, which is comparable to that of the central protostar. Based on spatial distributions of peak line intensities as a function of excitation energy, we infer that the HMCs are externally heated by the protostar. We estimate column densities and abundances of the detected species and discuss the implications for hot core astrochemistry.
  •  
8.
  • Law, Chi Yan, 1990, et al. (författare)
  • Isolated Massive Star Formation in G28.20-0.05
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 939:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report high-resolution 1.3 mm continuum and molecular line observations of the massive protostar G28.20-0.05 with Atacama Large Millimeter/submillimeter Array. The continuum image reveals a ring-like structure with 2000 au radius, similar to morphology seen in archival 1.3 cm Very Large Array observations. Based on its spectral index and associated H30α emission, this structure mainly traces ionized gas. However, there is evidence for ∼30 M ⊙ of dusty gas near the main millimeter continuum peak on one side of the ring, as well as in adjacent regions within 3000 au. A virial analysis on scales of ∼2000 au from hot core line emission yields a dynamical mass of ∼80 M ⊙. A strong velocity gradient in the H30α emission is evidence for a rotating, ionized disk wind, which drives a larger-scale molecular outflow. An infrared spectral energy distribution (SED) analysis indicates a current protostellar mass of m * ∼ 40 M ⊙ forming from a core with initial mass M c ∼ 300 M ⊙ in a clump with mass surface density of Σcl ∼ 0.8 g cm−2. Thus the SED and other properties of the system can be understood in the context of core accretion models. A structure-finding analysis on the larger-scale continuum image indicates G28.20-0.05 is forming in a relatively isolated environment, with no other concentrated sources, i.e., protostellar cores, above ∼1 M ⊙ found from ∼0.1 to 0.4 pc around the source. This implies that a massive star can form in relative isolation, and the dearth of other protostellar companions within the ∼1 pc environs is a strong constraint on massive star formation theories that predict the presence of a surrounding protocluster.
  •  
9.
  • Law, Chi Yan, 1990, et al. (författare)
  • Polarized Light from Massive Protoclusters (POLIMAP). I. Dissecting the Role of Magnetic Fields in the Massive Infrared Dark Cloud G28.37+0.07
  • 2024
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 967:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic fields may play a crucial role in setting the initial conditions of massive star and star cluster formation. To investigate this, we report SOFIA-HAWC+ 214 μm observations of polarized thermal dust emission and high-resolution GBT-Argus C18O(1-0) observations toward the massive Infrared Dark Cloud (IRDC) G28.37+0.07. Considering the local dispersion of B-field orientations, we produce a map of the B-field strength of the IRDC, which exhibits values between ∼0.03 and 1 mG based on a refined Davis-Chandrasekhar-Fermi method proposed by Skalidis & Tassis. Comparing to a map of inferred density, the IRDC exhibits a B-n relation with a power-law index of 0.51 ± 0.02, which is consistent with a scenario of magnetically regulated anisotropic collapse. Consideration of the mass-to-flux ratio map indicates that magnetic fields are dynamically important in most regions of the IRDC. A virial analysis of a sample of massive, dense cores in the IRDC, including evaluation of magnetic and kinetic internal and surface terms, indicates consistency with virial equilibrium, sub-Alfvénic conditions, and a dominant role for B-fields in regulating collapse. A clear alignment of magnetic field morphology with the direction of the steepest column density gradient is also detected. However, there is no preferred orientation of protostellar outflow directions with the B-field. Overall, these results indicate that magnetic fields play a crucial role in regulating massive star and star cluster formation, and therefore they need to be accounted for in theoretical models of these processes.
  •  
10.
  • Cosentino, Giuliana, 1990, et al. (författare)
  • SiO emission as a probe of cloud-cloud collisions in infrared dark clouds
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 499:2, s. 1666-1681
  • Tidskriftsartikel (refereegranskat)abstract
    • Infrared dark clouds (IRDCs) are very dense and highly extincted regions that host the initial conditions of star and stellar cluster formation. It is crucial to study the kinematics and molecular content of IRDCs to test their formation mechanism and ultimately characterize these initial conditions. We have obtained high-sensitivity Silicon Monoxide, SiO(2-1), emission maps towards the six IRDCs, G018.82-00.28, G019.27+00.07, G028.53-00.25, G028.67+00.13, G038.95-00.47, and G053.11+00.05 (cloud A, B, D, E, I, and J, respectively), using the 30-m antenna at the Instituto de Radioastronomia Millimetrica (IRAM30m). We have investigated the SiO spatial distribution and kinematic structure across the six clouds to look for signatures of cloud-cloud collision events that may have formed the IRDCs and triggered star formation within them. Towards clouds A, B, D, I, and J, we detect spatially compact SiO emission with broad-line profiles that are spatially coincident with massive cores. Towards the IRDCs A and I, we report an additional SiO component that shows narrow-line profiles and that is widespread across quiescent regions. Finally, we do not detect any significant SiO emission towards cloud E. We suggest that the broad and compact SiO emission detected towards the clouds is likely associated with ongoing star formation activity within the IRDCs. However, the additional narrow and widespread SiO emission detected towards cloud A and I may have originated from the collision between the IRDCs and flows of molecular gas pushed towards the clouds by nearby H II regions.
  •  
11.
  • Costa Silva, A. R., et al. (författare)
  • NIR jets from a clustered region of massive star formation: Morphology and composition in the IRAS 18264-1152 region
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Massive stars play crucial roles in determining the physical and chemical evolution of galaxies. However, they form deeply embedded in their parental clouds, making it challenging to directly observe these stars and their immediate environments. It is known that accretion and ejection processes are intrinsically related, thus observing the massive protostellar outflows can provide crucial information about the processes governing massive star formation very close to the central engine. Aims. We aim to probe the IRAS 18264-1152 (also known as G19.88-0.53) high-mass star-forming complex in the near infrared (NIR) through its molecular hydrogen (H2) jets to analyse the morphology and composition of the line emitting regions and to compare with other outflow tracers. Methods. We observed the H2 NIR jets via K-band (1.9 2.5 μm) observations obtained with the integral field units VLT/SINFONI and VLT/KMOS. VLT/SINFONI provides the highest NIR angular resolution achieved so far for the central region of IRAS 18264-1152 (∼0.2). We compared the geometry of the NIR outflows with that of the associated molecular outflow, probed by CO (2-1) emission mapped with the Submillimeter Array. Results. We identify nine point sources in the SINFONI and KMOS fields of view. Four of these display a rising continuum in the K-band and are Brγ emitters, revealing that they are young, potentially jet-driving sources. The spectro-imaging analysis focusses on the H2 jets, for which we derived visual extinction, temperature, column density, area, and mass. The intensity, velocity, and excitation maps based on H2 emission strongly support the existence of a protostellar cluster in this region, with at least two (and up to four) different large-scale outflows, found through the NIR and radio observations. We compare our results with those found in the literature and find good agreement in the outflow morphology. This multi-wavelength comparison also allows us to derive a stellar density of ∼4000 stars pc-3. Conclusions. Our study reveals the presence of several outflows driven by young sources from a forming cluster of young, massive stars, demonstrating the utility of such NIR observations for characterising massive star-forming regions. Moreover, the derived stellar number density together with the geometry of the outflows suggest that stars can form in a relatively ordered manner in this cluster.
  •  
12.
  • Crowe, S., et al. (författare)
  • Near-infrared observations of outflows and young stellar objects in the massive star-forming region AFGL 5180
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Massive stars play important roles throughout the universe; however, their formation remains poorly understood. Observations of jets and outflows in high-mass star-forming regions, as well as surveys of young stellar object (YSO) content, can help test theoretical models of massive star formation. Aims. We aim at characterizing the massive star-forming region AFGL 5180 in the near-infrared (NIR), identifying outflows and relating these to sub-mm/mm sources, as well as surveying the overall YSO surface number density to compare to massive star formation models. Methods. Broad- and narrow-band imaging of AFGL 5180 was made in the NIR with the Large Binocular Telescope, in both seeing-limited (~0.5′) and high angular resolution (~0.09′) Adaptive Optics (AO) modes, as well as with the Hubble Space Telescope. Archival continuum data from the Atacama Millimeter/Submillimeter Array (ALMA) was also utilized. Results. At least 40 jet knots were identified via NIR emission from H2 and [FeII] tracing shocked gas. Bright jet knots outflowing from the central most massive protostar, S4 (estimated mass ~11 M⊙, via SED fitting), are detected towards the east of the source and are resolved in fine detail with the AO imaging. Additional knots are distributed throughout the field, likely indicating the presence of multiple driving sources. Sub-millimeter sources detected by ALMA are shown to be grouped in two main complexes, AFGL 5180 M and a small cluster ~15′ (0.15 pc in projection) to the south, AFGL 5180 S. From our NIR continuum images we identify YSO candidates down to masses of ~0.1 M⊙. Combined with the sub-mm sources, this yields a surface number density of such YSOs of N* ~ 103pc-2 within a projected radius of about 0.1 pc. Such a value is similar to those predicted by models of both core accretion from a turbulent clump environment and competitive accretion. The radial profile of N* is relatively flat on scales out to 0.2 pc, with only modest enhancement around the massive protostar inside 0.05 pc, which provides additional constraints on these massive star formation models. Conclusions. This study demonstrates the utility of high-resolution NIR imaging, in particular with AO, for detecting outflow activity and YSOs in distant regions. The presented images reveal the complex morphology of outflow-shocked gas within the large-scale bipolar flow of a massive protostar, as well as clear evidence for several other outflow driving sources in the region. Finally, this work presents a novel approach to compare the observed YSO surface number density from our study against different models of massive star formation.
  •  
13.
  • Entekhabi, N., et al. (författare)
  • Astrochemical modelling of infrared dark clouds
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 662
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Infrared dark clouds (IRDCs) are cold, dense regions of the interstellar medium (ISM) that are likely to represent the initial conditions for massive star and star cluster formation. It is thus important to study the physical and chemical conditions of IRDCs to provide constraints and inputs for theoretical models of these processes. Aims. We aim to determine the astrochemical conditions, especially the cosmic ray ionisation rate (CRIR) and chemical age, in different regions of the massive IRDC G28.37+00.07 by comparing observed abundances of multiple molecules and molecular ions with the predictions of astrochemical models. Methods. We have computed a series of single-zone, time-dependent, astrochemical models with a gas-grain network that systematically explores the parameter space of the density, temperature, CRIR, and visual extinction. We have also investigated the effects of choices of CO ice binding energy and temperatures achieved in the transient heating of grains when struck by cosmic rays. We selected ten positions across the IRDC that are known to have a variety of star formation activity. We utilised mid-infrared extinction maps and sub-millimetre (sub-mm) emission maps to measure the mass surface densities of these regions needed for abundance and volume density estimates. The sub-mm emission maps were also used to measure temperatures. We then used Instituto de Radioas-tromía Milimétrica (IRAM) 30 m observations of various tracers, especially C18O(1-0), H13CO+(1-0), HC18O+(1-0), and N2H+(1-0), to estimate column densities and thus abundances. Finally, we investigated the range of astrochemical conditions that are consistent with the observed abundances. Results. The typical physical conditions of the IRDC regions are nH ∼ 3 ×-104 to 105 cm-3 and T ∼ 10 to 15 K. Strong emission of H13CO+(1-0) and N2H+(1-0) is detected towards all the positions and these species are used to define relatively narrow velocity ranges of the IRDC regions, which are used for estimates of CO abundances, via C18O(1-0). We would like to note that CO depletion factors are estimated to be in the range fD ∼ 3 to 10. Using estimates of the abundances of CO, HCO+, and N2H+, we find consistency with astrochemical models that have relatively low CRIRs of ζ ∼ 10-18 to ∼10-17 s-1, with no evidence for systematic variation with the level of star formation activity. Astrochemical ages, which are defined with a reference to an initial condition of all H in H2, all C in CO, and all other species in atomic form, are found to be <1 Myr. We also explore the effects of using other detected species, that is HCN, HNC, HNCO, CH3OH, and H2CO, to constrain the models. These generally lead to implied conditions with higher levels of CRIRs and older chemical ages. Considering the observed fD versus nH relation of the ten positions, which we find to have relatively little scatter, we discuss potential ways in which the astrochemical models can match such a relation as a quasi-equilibrium limit valid at ages of at least a few free-fall times, that is 3;0.3 Myr, including the effect of CO envelope contamination, small variations in temperature history near 15 K, CO-ice binding energy uncertainties, and CR-induced desorption. We find general consistency with the data of ∼0.5 Myr-old models that have ζ ∼ 2-5-10-18 s-1 and CO abundances set by a balance of freeze-out with CR-induced desorption. Conclusions. We have constrained the astrochemical conditions in ten regions in a massive IRDC, finding evidence for relatively low values of CRIR compared to diffuse ISM levels. We have not seen clear evidence for variation in the CRIR with the level of star formation activity. We favour models that involve relatively low CRIRs (≲ 10-17 s-1) and relatively old chemical ages (≳ 3;0.3 Myr, i.e. 3;3tff). We discuss potential sources of systematic uncertainties in these results and the overall implications for IRDC evolutionary history and astrochemical models.
  •  
14.
  • Fedriani, Rubén, 1991, et al. (författare)
  • The sharpest view on the high-mass star-forming region S255IR: Near infrared adaptive optics imaging of the outbursting source NIRS3
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 676
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Massive stars have an impact on their surroundings from early in their formation until the end of their lives. However, very little is known about their formation. Episodic accretion may play a crucial role in the process, but only a handful of observations have reported such events occurring in massive protostars. Aims. We aim to investigate the outburst event from the high-mass star-forming region S255IR where the protostar NIRS3 recently underwent an accretion outburst. We follow the evolution of this source both in photometry and morphology of its surroundings. Methods. We performed near infrared adaptive optics observations on the S255IR central region using the Large Binocular Telescope in the Ks broadband as well as the H2 and Brγ narrow-band filters with an angular resolution of 07.06, close to the diffraction limit. Results. We discovered a new near infrared knot north-east of NIRS3 that we interpret as a jet knot that was ejected during the last accretion outburst and observed in the radio regime as part of a follow-up after the outburst. We measured a mean tangential velocity for this knot of 450 ± 50 km s1. We analysed the continuum-subtracted images from H2, which traces jet-shocked emission, and Brγ, which traces scattered light from a combination of accretion activity and UV radiation from the central massive protostar. We observed a significant decrease in flux at the location of NIRS3, with K = 13.48 mag being the absolute minimum in the historic series. Conclusions. Our observations strongly suggest a scenario where the episodic accretion is followed by an episodic ejection response in the near infrared, as was seen in the earlier radio follow-up. The ~2 μm photometry from the past 30 yr suggests that NIRS3 might have undergone another outburst in the late 1980s, making it the first massive protostar with such evidence observed in the near infrared.
  •  
15.
  • Jimenez-Serra, I., et al. (författare)
  • The Complex Organic Molecular Content in the L1498 Starless Core
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 917:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations carried out toward starless and prestellar cores have revealed that complex organic molecules are prevalent in these objects, but it is unclear what chemical processes are involved in their formation. Recently, it has been shown that complex organics are preferentially produced at an intermediate-density shell within the L1544 prestellar core at radial distances of similar to 4000 au with respect to the core center. However, the spatial distribution of complex organics has only been inferred toward this core, and it remains unknown whether these species present a similar behavior in other cores. We report high-sensitivity observations carried out toward two positions in the L1498 starless core, the dust peak and a position located at a distance of similar to 11,000 au from the center of the core where the emission of CH3OH peaks. Similarly to L1544, our observations reveal that small O-bearing molecules and N-bearing species are enhanced by factors of similar to 4-14 toward the outer shell of L1498. However, unlike L1544, large O-bearing organics such as CH3CHO, CH3OCH3, or CH3OCHO are not detected within our sensitivity limits. For N-bearing organics, these species are more abundant toward the outer shell of the L1498 starless core than toward the one in L1544. We propose that the differences observed between O-bearing and N-bearing species in L1498 and L1544 are due to the different physical structure of these cores, which in turn is a consequence of their evolutionary stage, with L1498 being younger than L1544.
  •  
16.
  • Liu, Mengyao, et al. (författare)
  • SiO Outflows as Tracers of Massive Star Formation in Infrared Dark Clouds
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 921:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To study the early phases of massive star formation, we present ALMA observations of SiO(5-4) emission and VLA observations of 6 cm continuum emission toward 32 Infrared Dark Cloud clumps, spatially resolved down to less than or similar to 0.05 pc. Out of the 32 clumps, we detect SiO emission in 20 clumps, and in 11 of them the SiO emission is relatively strong and likely tracing protostellar outflows. Some SiO outflows are collimated, while others are less ordered. For the six strongest SiO outflows, we estimate basic outflow properties. In our entire sample, where there is SiO emission, we find 1.3 mm continuum and infrared emission nearby, but not vice versa. We build the spectral energy distributions (SEDs) of cores with 1.3 mm continuum emission and fit them with radiative transfer models. The low luminosities and stellar masses returned by SED fitting suggest these are early-stage protostars. We see a slight trend of increasing SiO line luminosity with bolometric luminosity, which suggests more powerful shocks in the vicinity of more massive YSOs. We do not see a clear relation between the SiO luminosity and the evolutionary stage indicated by L/M. We conclude that, as a protostar approaches a bolometric luminosity of similar to 10(2) L (circle dot), the shocks in the outflow are generally strong enough to form SiO emission. The VLA 6 cm observations toward the 15 clumps with the strongest SiO emission detect emission in four clumps, which is likely from shock-ionized jets associated with the more massive ones of these protostellar cores.
  •  
17.
  • Megias, A., et al. (författare)
  • The complex organic molecular content in the L1517B starless core
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:2, s. 1601-1617
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent observations of the pre-stellar core L1544 and the younger starless core L1498 have revealed that complex organic molecules (COMs) are enhanced in the gas phase towards their outer and intermediate-density shells. Our goal is to determine the level of chemical complexity towards the starless core L1517B, which seems younger than L1498, and compare it with the other two previously studied cores to see if there is a chemical evolution within the cores. We have carried out 3 mm high-sensitivity observations towards two positions in the L1517B starless core: the core's centre and the position where the methanol emission peaks (at a distance of similar to 5000 au from the core's centre). Our observations reveal that a lower number of COMs and COM precursors are detected in L1517B with respect to L1498 and L1544, and also show lower abundances. Besides methanol, we only detected CH3O, H2CCO, CH3CHO, CH3CN, CH3NC, HCCCN, and HCCNC. Their measured abundances are similar to 3 times larger towards the methanol peak than towards the core's centre, mimicking the behaviour found towards the more evolved cores L1544 and L1498. We propose that the differences in the chemical complexity observed between the three studied starless cores are a consequence of their evolution, with L1517B being the less evolved one, followed by L1498 and L1544. Chemical complexity in these cores seems to increase over time, with N-bearing molecules forming first and O-bearing COMs forming at a later stage as a result of the catastrophic depletion of CO.
  •  
18.
  • O'Neill, Theo J., et al. (författare)
  • The Core Mass Function across Galactic Environments. III. Massive Protoclusters
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 916:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The stellar initial mass function (IMF) is fundamental for many areas of astrophysics, but its origin remains poorly understood. It may be inherited from the core mass function (CMF) or arise as a result of more chaotic, competitive accretion. Dense, gravitationally bound cores are seen in molecular clouds and some observations have suggested that the CMF is similar in shape to the IMF, though translated to higher masses by a factor of similar to 3. Here we measure the CMF in 28 dense clumps within 3.5 kpc that are likely to be central regions of massive protoclusters, observed via 1.3 mm dust continuum emission by the ALMAGAL project. We identify 222 cores using the dendrogram algorithm with masses ranging from 0.04 to 252 M-circle dot. We apply completeness corrections for flux and number recovery, estimated from core insertion and recovery experiments. At higher masses, the final derived CMF is well described by a single power law of the form dN/d log M proportional to M-alpha alpha similar or equal to 0.94 +/- 0.08. However, we find evidence of a break in this power-law behavior between similar to 5 and 15 M-circle dot, which is, to our knowledge, the first time such a break has been found in distant (greater than or similar to 1 kpc) regions by the Atacama Large Millimeter/submillimeter Array. We compare this massive protocluster CMF with those derived using the same methods in the G286 protocluster and a sample of infrared dark clouds. The massive protocluster CMF is significantly different, i.e., containing more massive cores, which is a potential indication of the role of environment on the CMF and IMF.
  •  
19.
  • Rivilla, Víctor M., et al. (författare)
  • Ionize Hard: Interstellar PO + Detection
  • 2022
  • Ingår i: Frontiers in Astronomy and Space Sciences. - : Frontiers Media SA. - 2296-987X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first detection of the phosphorus monoxide ion (PO+) in the interstellar medium. Our unbiased and very sensitive spectral survey toward the G+0.693–0.027 molecular cloud covers four different rotational transitions of this molecule, two of which (J = 1–0 and J = 2–1) appear free of contamination from other species. The fit performed, assuming local thermodynamic equilibrium conditions, yields a column density of N=(6.0 ± 0.7) × 1011 cm−2. The resulting molecular abundance with respect to molecular hydrogen is 4.5 × 10–12. The column density of PO+ normalized by the cosmic abundance of P is larger than those of NO+ and SO+, normalized by N and S, by factors of 3.6 and 2.3, respectively. The N(PO+)/N(PO) ratio is 0.12 ± 0.03, more than one order of magnitude higher than that of N(SO+)/N(SO) and N(NO+)/N(NO). These results indicate that P is more efficiently ionized than N and S in the ISM. We have performed new chemical models that confirm that the PO+ abundance is strongly enhanced in shocked regions with high values of cosmic-ray ionization rates (10–15 − 10–14 s−1), as occurring in the G+0.693–0.027 molecular cloud. The shocks sputter the interstellar icy grain mantles, releasing into the gas phase most of their P content, mainly in the form of PH3, which is converted into atomic P, and then ionized efficiently by cosmic rays, forming P+. Further reactions with O2 and OH produces PO+. The cosmic-ray ionization of PO might also contribute significantly, which would explain the high N(PO+)/N(PO) ratio observed. The relatively high gas-phase abundance of PO+ with respect to other P-bearing species stresses the relevance of this species in the interstellar chemistry of P.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy