SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cowley S. W. H.) srt2:(2010-2014)"

Sökning: WFRF:(Cowley S. W. H.) > (2010-2014)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Meyer, H., et al. (författare)
  • Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:10, s. 104008-
  • Tidskriftsartikel (refereegranskat)abstract
    • New diagnostic, modelling and plant capability on the Mega Ampere Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved T-i measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L-H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. T-e inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional Alfven eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows.
  •  
2.
  • Lloyd, B., et al. (författare)
  • Overview of physics results from MAST
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9, s. 094013 (paper no.)-
  • Tidskriftsartikel (refereegranskat)abstract
    • Major developments on the Mega Amp Spherical Tokamak (MAST) have enabled important advances in support of ITER and the physics basis of a spherical tokamak (ST) based component test facility (CTF), as well as providing new insight into underlying tokamak physics. For example, L-H transition studies benefit from high spatial and temporal resolution measurements of pedestal profile evolution (temperature, density and radial electric field) and in support of pedestal stability studies the edge current density profile has been inferred from motional Stark effect measurements. The influence of the q-profile and E x B flow shear on transport has been studied in MAST and equilibrium flow shear has been included in gyro-kinetic codes, improving comparisons with the experimental data. H-modes exhibit a weaker q and stronger collisionality dependence of heat diffusivity than implied by IPB98(gamma, 2) scaling, which may have important implications for the design of an ST-based CTF. ELM mitigation, an important issue for ITER, has been demonstrated by applying resonant magnetic perturbations (RMPs) using both internal and external coils, but full stabilization of type-I ELMs has not been observed. Modelling shows the importance of including the plasma response to the RMP fields. MAST plasmas with q > 1 and weak central magnetic shear regularly exhibit a long-lived saturated ideal internal mode. Measured plasma braking in the presence of this mode compares well with neo-classical toroidal viscosity theory. In support of basic physics understanding, high resolution Thomson scattering measurements are providing new insight into sawtooth crash dynamics and neo-classical tearing mode critical island widths. Retarding field analyser measurements show elevated ion temperatures in the scrape-off layer of L-mode plasmas and, in the presence of type-I ELMs, ions with energy greater than 500 eV are detected 20 cm outside the separatrix. Disruption mitigation by massive gas injection has reduced divertor heat loads by up to 70%.
  •  
3.
  • Badman, S. V., et al. (författare)
  • Rotational modulation and local time dependence of Saturn's infrared H-3(+) auroral intensity
  • 2012
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 117
  • Tidskriftsartikel (refereegranskat)abstract
    • Planetary auroral emissions reveal the configuration of magnetospheric field-aligned current systems. In this study, Cassini Visual and Infrared Mapping Spectrometer (VIMS) observations of Saturn's pre-equinox infrared H-3(+) aurorae were analysed to show (a) rotational modulation of the auroral intensity in both hemispheres and (b) a significant local time dependence of the emitted intensity. The emission intensity is modulated by the 'planetary period' rotation of auroral current systems in each hemisphere. The northern auroral intensity also displays a lesser anti-phase dependence on the southern rotating current system, indicating that part of the southern current system closes in the northern hemisphere. The southern hemisphere aurorae were most intense in the post-dawn sector, in agreement with some past measurements of auroral field-aligned currents, UV aurora and SKR emitted power. A corresponding investigation of the northern hemisphere auroral intensity reveals a broader dawn-noon enhancement, possibly due to the interaction of the southern rotating current system with that of the north. The auroral intensity was reduced around dusk and post-midnight in both hemispheres. These observations can be explained by the interaction of a rotating field-aligned current system in each hemisphere with one fixed in local time, which is related to the solar wind interaction with magnetospheric field lines.
  •  
4.
  • Bunce, E. J., et al. (författare)
  • Cassini nightside observations of the oscillatory motion of Saturn's northern auroral oval
  • 2014
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380. ; 119:5, s. 3528-3543
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years we have benefitted greatly from the first in-orbit multi-wavelength images of Saturn's polar atmosphere from the Cassini spacecraft. Specifically, images obtained from the Cassini UltraViolet Imaging Spectrograph (UVIS) provide an excellent view of the planet's auroral emissions, which in turn give an account of the large-scale magnetosphere-ionosphere coupling and dynamics within the system. However, obtaining near-simultaneous views of the auroral regions with in situ measurements of magnetic field and plasma populations at high latitudes is more difficult to routinely achieve. Here we present an unusual case, during Revolution 99 in January 2009, where UVIS observes the entire northern UV auroral oval during a 2h interval while Cassini traverses the magnetic flux tubes connecting to the auroral regions near 21 LT, sampling the related magnetic field, particle, and radio and plasma wave signatures. The motion of the auroral oval evident from the UVIS images requires a careful interpretation of the associated latitudinally oscillating magnetic field and auroral field-aligned current signatures, whereas previous interpretations have assumed a static current system. Concurrent observations of the auroral hiss (typically generated in regions of downward directed field-aligned current) support this revised interpretation of an oscillating current system. The nature of the motion of the auroral oval evident in the UVIS image sequence, and the simultaneous measured motion of the field-aligned currents (and related plasma boundary) in this interval, is shown to be related to the northern hemisphere magnetosphere oscillation phase. This is in agreement with previous observations of the auroral oval oscillatory motion.
  •  
5.
  • Jinks, S. L., et al. (författare)
  • Cassini multi-instrument assessment of Saturn's polar cap boundary
  • 2014
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 119:10, s. 8161-8177
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first systematic investigation of the polar cap boundary in Saturn's high-latitude magnetosphere through a multi-instrument assessment of various Cassini in situ data sets gathered between 2006 and 2009. We identify 48 polar cap crossings where the polar cap boundary can be clearly observed in the step in upper cutoff of auroral hiss emissions from the plasma wave data, a sudden increase in electron density, an anisotropy of energetic electrons along the magnetic field, and an increase in incidence of higher-energy electrons from the low-energy electron spectrometer measurements as we move equatorward from the pole. We determine the average level of coincidence of the polar cap boundary identified in the various in situ data sets to be 0.34 degrees 0.05 degrees colatitude. The average location of the boundary in the southern (northern) hemisphere is found to be at 15.6 degrees (13.3 degrees) colatitude. In both hemispheres we identify a consistent equatorward offset between the poleward edge of the auroral upward directed field-aligned current region of similar to 1.5-1.8 degrees colatitude to the corresponding polar cap boundary. We identify atypical observations in the boundary region, including observations of approximately hourly periodicities in the auroral hiss emissions close to the pole. We suggest that the position of the southern polar cap boundary is somewhat ordered by the southern planetary period oscillation phase but that it cannot account for the boundary's full latitudinal variability. We find no clear evidence of any ordering of the northern polar cap boundary location with the northern planetary period magnetic field oscillation phase.
  •  
6.
  • Edberg, Niklas, et al. (författare)
  • Pumping out the atmosphere of Mars through solar wind pressure pulses
  • 2010
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 37, s. L03107-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study atmospheric escape from Mars during solar wind pressure pulses. During the solar minimum of 2007 08 we have observed 41 high pressure events, which are predominantly identified as corotating interaction regions (CIR) while a few are coronal mass ejections (CME), in data from the Advanced Composition Explorer (ACE) upstream of the Earth. 36 of these events are also identified using Mars Express (MEX) data at Mars. We use MEX measurements at Mars to compare the antisunward fluxes of heavy planetary ions during the passage of these pulses to the fluxes during quiet solar wind conditions. The ion fluxes are observed to increase by a factor of similar to 2.5, on average. Hence, a third of the total outflow from Mars takes place during similar to 15% of the time, when a solar wind pressure pulse impacts on the planet. This can have important consequences for the total time-integrated outflow of plasma from Mars.
  •  
7.
  • Edberg, Niklas J. T., et al. (författare)
  • Atmospheric erosion of Venus during stormy space weather
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A09308-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study atmospheric escape from Venus during solar minimum conditions when 147 corotating interaction regions (CIRs) and interplanetary coronal mass ejections (ICMEs) combined impact on the planet. This is the largest study to date of the effects of stormy space weather on Venus and we show for the first time statistically that the atmosphere of Venus is significantly affected by CIRs and ICMEs. When such events impact on Venus, as observed by the ACE and Venus Express satellites, the escape rate of Venus's ionosphere is measured to increase by a factor of 1.9, on average, compared to quiet solar wind times. However, the increase in escape flux during impacts can occasionally be significantly larger by orders of magnitude. Taking into account the occurrence rate of such events we find that roughly half (51%) of the outflow occurs during stormy space weather. Furthermore, we particularly discuss the importance of the increased solar wind dynamic pressure as well as the polarity change of the interplanetary magnetic field (IMF) in terms of causing the increase escape rate. The IMF polarity change across a CIR/ICME could cause dayside magnetic reconnection processes to occur in the induced magnetosphere of Venus, which would add to the erosion through associated particle acceleration.
  •  
8.
  • Farrugia, C. J., et al. (författare)
  • "Crater" flux transfer events : Highroad to the X line?
  • 2011
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 116:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine Cluster observations of a so-called magnetosphere "crater FTE," employing data from five instruments (FGM, CIS, EDI, EFW, and WHISPER), some at the highest resolution. The aim of doing this is to deepen our understanding of the reconnection nature of these events by applying recent advances in the theory of collisionless reconnection and in detailed observational work. Our data support the hypothesis of a stratified structure with regions which we show to be spatial structures. We support the bulge-like topology of the core region (R3) made up of plasma jetting transverse to reconnected field lines. We document encounters with a magnetic separatrix as a thin layer embedded in the region (R2) just outside the bulge, where the speed of the protons flowing approximately parallel to the field maximizes: (1) short (fraction of a sec) bursts of enhanced electric field strengths (up to similar to 30 mV/m) and (2) electrons flowing against the field toward the X line at approximately the same time as the bursts of intense electric fields. R2 also contains a density decrease concomitant with an enhanced magnetic field strength. At its interface with the core region, R3, electric field activity ceases abruptly. The accelerated plasma flow profile has a catenary shape consisting of beams parallel to the field in R2 close to the R2/R3 boundary and slower jets moving across the magnetic field within the bulge region. We detail commonalities our observations of crater FTEs have with reconnection structures in other scenarios. We suggest that in view of these properties and their frequency of occurrence, crater FTEs are ideal places to study processes at the separatrices, key regions in magnetic reconnection. This is a good preparation for the MMS mission.
  •  
9.
  • Edberg, Niklas J. T., et al. (författare)
  • Magnetosonic Mach number effect of the position of the bow shock at Mars in comparison to Venus
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A07203-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the effect of the magnetosonic Mach number on the position of the bow shock (BS) at Mars. The magnetosonic Mach number is calculated from solar wind data obtained by the ACE satellite upstream of Earth and extrapolated to Mars during two intervals, starting in 2005 and 2007, when Mars and Earth were close to opposition. An increased Mach number is observed to cause the Martian BS to move to lower altitudes and the variation in the terminator altitude is proportional to the Mach number change. When the Mach number is lowered, the BS flares more. We also compare our results to previous studies at Venus. The variation in BS altitude with magnetosonic Mach number is found to be very similar to the variation of the Venusian BS, which has previously been shown to decrease linearly in altitude with increasing Mach number.
  •  
10.
  • Edberg, Niklas J. T., et al. (författare)
  • Structured ionospheric outflow during the Cassini T55-T59 Titan flybys
  • 2011
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 59:8, s. 788-797
  • Tidskriftsartikel (refereegranskat)abstract
    • During the final three of the five consecutive and similar Cassini Titan flybys T55-T59 we observe a region characterized by high plasma densities (electron densities of 1-8 cm(-3)) in the tail/nightside of Titan. This region is observed progressively farther downtail from pass to pass and is interpreted as a plume of ionospheric plasma escaping Titan, which appears steady in both location and time. The ions in this plasma plume are moving in the direction away from Titan and are a mixture of both light and heavy ions with composition revealing that their origin are in Titan's ionosphere, while the electrons are more isotropically distributed. Magnetic field measurements indicate the presence of a current sheet at the inner edge of this region. We discuss the mechanisms behind this outflow, and suggest that it could be caused by ambipolar diffusion, magnetic moment pumping or dispersive Alfven waves.
  •  
11.
  • Andrews, David J., et al. (författare)
  • Planetary period oscillations in Saturn's magnetosphere : Evolution of magnetic oscillation properties from southern summer to post-equinox
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A04224-
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the evolution of the properties of planetary period magnetic field oscillations observed by the Cassini spacecraft in Saturn's magnetosphere over the interval from late 2004 to early 2011, spanning equinox in mid-2009. Oscillations within the inner quasi-dipolar region (L <= 12) consist of two components of close but distinct periods, corresponding essentially to the periods of the northern and southern Saturn kilometric radiation (SKR) modulations. These give rise to modulations of the combined amplitude and phase at the beat period of the two oscillations, from which the individual oscillation amplitudes and phases (and hence periods) can be determined. Phases are also determined from northern and southern polar oscillation data when available. Results indicate that the southern-period amplitude declines modestly over this interval, while the northern-period amplitude approximately doubles to become comparable with the southern-period oscillations during the equinox interval, producing clear effects in pass-to-pass oscillation properties. It is also shown that the periods of the two oscillations strongly converge over the equinox interval, such that the beat period increases significantly from similar to 20 to more than 100 days, but that they do not coalesce or cross during the interval investigated, contrary to recent reports of the behavior of the SKR periods. Examination of polar oscillation data for similar beat phase effects yields a null result within a similar to 10% upper limit on the relative amplitude of northern-period oscillations in the south and vice versa. This result strongly suggests a polar origin for the two oscillation periods.
  •  
12.
  • Provan, G., et al. (författare)
  • Planetary period magnetic field oscillations in Saturn's magnetosphere : Postequinox abrupt nonmonotonic transitions to northern system dominance
  • 2013
  • Ingår i: Journal of Geophysical Research-Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:6, s. 3243-3264
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine the planetary period magnetic field oscillations observed in the core region of Saturn's magnetosphere (dipole L12), on 56 near-equatorial Cassini periapsis passes that took place between vernal equinox in August 2009 and November 2012. Previous studies have shown that these consist of the sum of two oscillations related to the northern and southern polar regions having differing amplitudes and periods that had reached near-equal amplitudes and near-converged periods 10.68 h in the interval to 1 year after equinox. The present analysis shows that an interval of strongly differing behavior then began 1.5 years after equinox, in which abrupt changes in properties took place at 6- to 8-month intervals, with three clear transitions occurring in February 2011, August 2011, and April 2012, respectively. These are characterized by large simultaneous changes in the amplitudes of the two systems, together with small changes in period about otherwise near-constant values of 10.63 h for the northern system and 10.69 h for the southern (thus, not reversed postequinox) and on occasion jumps in phase. The first transition produced a resumption of strong southern system dominance unexpected under northern spring conditions, while the second introduced comparably strong northern system dominance for the first time in these data. The third resulted in suppression of all core oscillations followed by re-emergence of both systems on a time scale of 85 days, with the northern system remaining dominant but not as strongly as before. This behavior poses interesting questions for presently proposed theoretical scenarios.
  •  
13.
  • Ågren, Karin, et al. (författare)
  • Detection of currents and associated electric fields in Titan's ionosphere from Cassini data
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116:4, s. A04313-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations from three Cassini flybys of Titan using data from the radio and plasma wave science, magnetometer and plasma spectrometer instruments. We combine magnetic field and cold plasma measurements with calculated conductivities and conclude that there are currents of the order of 10 to 100 nA m (2) flowing in the ionosphere of Titan. The currents below the exobase (similar to 1400 km) are principally field parallel and Hall in nature, while the Pedersen current is negligible in comparison. Associated with the currents are perpendicular electric fields ranging from 0.5 to 3 mu V m (1).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy