SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cowperthwaite P. S.) "

Sökning: WFRF:(Cowperthwaite P. S.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lunnan, R., et al. (författare)
  • PS1-14bj : A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA WITH A LONG RISE AND SLOW DECAY
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 831:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present photometry and spectroscopy of PS1-14bj, a hydrogen-poor superluminous supernova (SLSN) at redshift z = 0.5215 discovered in the last months of the Pan-STARRS1 Medium Deep Survey. PS1-14bj stands out because of its extremely slow evolution, with an observed rise of greater than or similar to 125 rest-frame days, and exponential decline out to similar to 250 days past peak at a measured rate of 0.01 mag day(-1), consistent with fully trapped Co-56 decay. This is the longest rise time measured in an SLSN to date, and the first SLSN to show a rise time consistent with pair-instability supernova (PISN) models. Compared to other slowly evolving SLSNe, it is spectroscopically similar to the prototype SN 2007bi at maximum light, although lower in luminosity (L-peak similar or equal to 4.6 x 10(43) erg s(-1) ) and with a flatter peak than previous events. PS1-14bj shows a number of peculiar properties, including a near-constant color temperature for > 200 days past peak, and strong emission lines from [O III] lambda 5007 and [O III] lambda 4363 with a velocity width of similar to 3400 km s(-1) in its late-time spectra. These both suggest there is a sustained source of heating over very long timescales, and are incompatible with a simple Ni-56-powered/PISN interpretation. A modified magnetar model including emission leakage at late times can reproduce the light curve, in which case the blue continuum and [O III] features are interpreted as material heated and ionized by the inner pulsar wind nebula becoming visible at late times. Alternatively, the late-time heating could be due to interaction with a shell of H-poor circumstellar material.
  •  
2.
  • Scolnic, D., et al. (författare)
  • How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?
  • 2018
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 852:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies of 103Gpc(-3) yr(-1), consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is z = 0.8 for WFIRST, z = 0.25 for LSST, and z = 0.04 for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. More broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.
  •  
3.
  • Huerta, E. A., et al. (författare)
  • Enabling real-time multi-messenger astrophysics discoveries with deep learning
  • 2019
  • Ingår i: Nature reviews physics. - : Springer Science and Business Media LLC. - 2522-5820. ; 1:10, s. 600-608
  • Forskningsöversikt (refereegranskat)abstract
    • Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutrinos. In this Expert Recommendation, we review the key challenges of real-time observations of gravitational wave sources and their electromagnetic and astroparticle counterparts, and make a number of recommendations to maximize their potential for scientific discovery. These recommendations refer to the design of scalable and computationally efficient machine learning algorithms; the cyber-infrastructure to numerically simulate astrophysical sources, and to process and interpret multi-messenger astrophysics data; the management of gravitational wave detections to trigger real-time alerts for electromagnetic and astroparticle follow-ups; a vision to harness future developments of machine learning and cyber-infrastructure resources to cope with the big-data requirements; and the need to build a community of experts to realize the goals of multi-messenger astrophysics. A group of experts suggests ways in which deep learning can be used to enhance the potential for discovery in multi-messenger astrophysics.
  •  
4.
  • Cowperthwaite, P. S., et al. (författare)
  • An Empirical Study of Contamination in Deep, Rapid, and Wide-field Optical Follow-up of Gravitational Wave Events
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 858:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an empirical study of contamination in wide-field optical follow-up searches of gravitational wave sources from Advanced LIGO/Virgo using dedicated observations with the Dark Energy Camera. Our search covered similar to 56 deg(2), with two visits per night, in the i and z bands, followed by an additional set of griz images three weeks later to serve as reference images for subtraction. We achieve 5 sigma point-source limiting magnitudes of i approximate to 23.5 and z approximate to 22.4 mag in the coadded single-epoch images. We conduct a search for transient objects that mimic the i - z color behavior of both red (i-z > 0.5 mag) and blue (i-z < 0 mag) kilonova emission, finding 11 and 10 contaminants, respectively. Independent of color, we identify 48 transients of interest. Additionally, we leverage the rapid cadence of our observations to search for sources with characteristic timescales of approximate to 1 day and approximate to 3 hr, finding no potential contaminants. We assess the efficiency of our search with injected point sources, finding that we are 90% (60%) efficient when searching for red (blue) kilonova-like sources to a limiting magnitude of i less than or similar to 22.5 mag. Using our efficiencies, we derive sky rates for kilonova contaminants of R-red approximate to 0.16 deg(-2) and R-blue approximate to 0.80 deg(-2). The total contamination rate is R-all approximate to 1.79 deg(-2). We compare our results to previous optical follow-up efforts and comment on the outlook for gravitational wave follow-up searches as additional detectors (e.g., KAGRA, LIGO India) come online in the next decade.
  •  
5.
  • Ginsburg, Adam, et al. (författare)
  • astroquery: An Astronomical Web-querying Package in Python
  • 2019
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 157:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Astroquery is a collection of tools for requesting data from databases hosted on remote servers with interfaces exposed on the Internet, including those with web pages but without formal application program interfaces. These tools are built on the Python requests package, which is used to make HTTP requests, and astropy, which provides most of the data parsing functionality. astroquery modules generally attempt to replicate the web page interface provided by a given service as closely as possible, making the transition from browser-based to command-line interaction easy. astroquery has received significant contributions from throughout the astronomical community, including several from telescope archives. astroquery enables the creation of fully reproducible workflows from data acquisition through publication. This paper describes the philosophy, basic structure, and development model of the astroquery package. The complete documentation for astroquery can be found at http://astroquery.readthedocs.io/.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy