SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Damiati Samar) srt2:(2020)"

Sökning: WFRF:(Damiati Samar) > (2020)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Damiati, Safa A., et al. (författare)
  • Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics
  • 2020
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, synthetic polymeric particles were effectively fabricated by combining modern technologies of artificial intelligence (AI) and microfluidics. Because size uniformity is a key factor that significantly influences the stability of polymeric particles, therefore, this work aimed to establish a new AI application using machine learning technology for prediction of the size of poly(d,l-lactide-co-glycolide) (PLGA) microparticles produced by diverse microfluidic systems either in the form of single or multiple particles. Experimentally, the most effective factors for tuning droplet/particle sizes are PLGA concentrations and the flow rates of dispersed and aqueous phases in microfluidics. These factors were utilized to develop five different and simple in structure artificial neural network (ANN) models that are capable of predicting PLGA particle sizes produced by different microfluidic systems either individually or jointly merged. The systematic development of ANN models allowed ultimate construction of a single in silico model which consists of data for three different microfluidic systems. This ANN model eventually allowed rapid prediction of particle sizes produced using various microfluidic systems. This AI application offers a new platform for further rapid and economical exploration of polymer particles production in defined sizes for various applications including biomimetic studies, biomedicine, and pharmaceutics.
  •  
2.
  • Budreviciute, Aida, et al. (författare)
  • Management and Prevention Strategies for Non-communicable Diseases (NCDs) and Their Risk Factors
  • 2020
  • Ingår i: Frontiers In Public Health. - : Frontiers Media SA. - 2296-2565. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • Non-communicable diseases (NCDs) are of increasing concern for society and national governments, as well as globally due to their high mortality rate. The main risk factors of NCDs can be classified into the categories of self-management, genetic factors, environmental factors, factors of medical conditions, and socio-demographic factors. The main focus is on the elements of self-management and to reach a consensus about the influence of food on risk management and actions toward the prevention of NCDs at all stages of life. Nutrition interventions are essential in managing the risk of NCDs. As they are of the utmost importance, this review highlights NCDs and their risk factors and outlines several common prevention strategies. We foresee that the best prevention management strategy will include individual (lifestyle management), societal (awareness management), national (health policy decisions), and global (health strategy) elements, with target actions, such as multi-sectoral partnership, knowledge and information management, and innovations. The most effective preventative strategy is the one that leads to changes in lifestyle with respect to diet, physical activities, cessation of smoking, and the control of metabolic disorders.
  •  
3.
  • Damiati, Samar, et al. (författare)
  • Electrochemical Biosensors Based on S-Layer Proteins
  • 2020
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 20:6
  • Forskningsöversikt (refereegranskat)abstract
    • Designing and development of electrochemical biosensors enable molecule sensing and quantification of biochemical compositions with multitudinous benefits such as monitoring, detection, and feedback for medical and biotechnological applications. Integrating bioinspired materials and electrochemical techniques promote specific, rapid, sensitive, and inexpensive biosensing platforms for (e.g., point-of-care testing). The selection of biomaterials to decorate a biosensor surface is a critical issue as it strongly affects selectivity and sensitivity. In this context, smart biomaterials with the intrinsic self-assemble capability like bacterial surface (S-) layer proteins are of paramount importance. Indeed, by forming a crystalline two-dimensional protein lattice on many sensors surfaces and interfaces, the S-layer lattice constitutes an immobilization matrix for small biomolecules and lipid membranes and a patterning structure with unsurpassed spatial distribution for sensing elements and bioreceptors. This review aims to highlight on exploiting S-layer proteins in biosensor technology for various applications ranging from detection of metal ions over small organic compounds to cells. Furthermore, enzymes immobilized on the S-layer proteins allow specific detection of several vital biomolecules. The special features of the S-layer protein lattice as part of the sensor architecture enhances surface functionalization and thus may feature an innovative class of electrochemical biosensors.
  •  
4.
  • Damiati, Samar (författare)
  • In Situ Microfluidic Preparation and Solidification of Alginate Microgels
  • 2020
  • Ingår i: Macromolecular Research. - : Polymer Society of Korea. - 1598-5032 .- 2092-7673.
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomimetic fabrication of alginate beads has promising applications in the field of synthetic bioarchitecture. Combining microfluidic technology with in situ gelation enables the creation of alginate microgels with precisely tunable size, as well as allowing control of the crosslinking process. Owing to the wide range of applications of alginate microgel beads, this study aimed to develop various microfluidic models for the generation of such beads by investigating the influence of several parameters on their morphologies and dispersity. Four types of glass microfluidic chips with flow focusing or co-flowing droplet generators were used to continuously form alginate droplets, with the possibility of either internal or external alginate gelation by a cross-linking agent supplied by a microfluidic channel. In all four models, alginate was used at a fixed concentration, Span 80 was used as a surfactant to improve the long-term stability of the beads, either mineral oil or oleic acid was used as a continuous phase, and either calcium carbonate (CaCO3) or calcium chloride (CaCl2) was used as a crosslinking agent. The generated beads exhibited various architectures, including individual monodisperse or polydisperse beads, small clusters, and multicompartment systems. The results of the study revealed the importance of microfluidic design and gelation strategy for the generation of stable polymeric architectures. The current study proposes a simple user’s guide to create alginate microgels in various architectures. The fabricated biomimetic models in the form of polymeric-based vesicles can be further exploited in several applications, including cell-like structures, tissue engineering, and cell and drug encapsulation. Additional investigations will be needed, however, to improve these models so that they more closely resemble the natural structures of cells and tissues. [Figure not available: see fulltext.]. 
  •  
5.
  • Schweiker, Marcel, et al. (författare)
  • Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe?
  • 2020
  • Ingår i: Energy and Buildings. - : Elsevier BV. - 0378-7788. ; 211
  • Tidskriftsartikel (refereegranskat)abstract
    • People's subjective response to any thermal environment is commonly investigated by using rating scales describing the degree of thermal sensation, comfort, and acceptability. Subsequent analyses of results collected in this way rely on the assumption that specific distances between verbal anchors placed on the scale exist and that relationships between verbal anchors from different dimensions that are assessed (e.g. thermal sensation and comfort) do not change. Another inherent assumption is that such scales are independent of the context in which they are used (climate zone, season, etc.). Despite their use worldwide, there is indication that contextual differences influence the way the scales are perceived and therefore question the reliability of the scales’ interpretation. To address this issue, a large international collaborative questionnaire study was conducted in 26 countries, using 21 different languages, which led to a dataset of 8225 questionnaires. Results, analysed by means of robust statistical techniques, revealed that only a subset of the responses are in accordance with the mentioned assumptions. Significant differences appeared between groups of participants in their perception of the scales, both in relation to distances of the anchors and relationships between scales. It was also found that respondents’ interpretations of scales changed with contextual factors, such as climate, season, and language. These findings highlight the need to carefully consider context-dependent factors in interpreting and reporting results from thermal comfort studies or post-occupancy evaluations, as well as to revisit the use of rating scales and the analysis methods used in thermal comfort studies to improve their reliability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy