SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Discetti S.) "

Sökning: WFRF:(Discetti S.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Örlü, Ramis, 1977-, et al. (författare)
  • Towards canonical adverse-pressure-gradient turbulent boundary layers
  • 2017
  • Ingår i: 10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017. - : International Symposium on Turbulence and Shear Flow Phenomena, TSFP10. - 9780000000002
  • Konferensbidrag (refereegranskat)abstract
    • The present investigation focuses on the concerted investigation of pressure gradient and streamwise curvature effects on turbulent boundary layers. In particular, a number of direct and large-eddy simulations covering a wide range of pressure gradient parameters and streamwise histories on flat and curved surfaces is performed and will be compared with wind-tunnel experiments utilising hot-wire anemometry and particle image velocimetry that overlap and extend the Reynolds number range. Results are aimed at isolating the effects of pressure gradients, streamwise curvature and streamwise (pressure gradient) histories as well as Reynolds number, which have traditionally inhibited to draw firm conclusions from the available data.
  •  
2.
  • Discetti, S., et al. (författare)
  • Characterization of very-large-scale motions in high-Re pipe flows
  • 2019
  • Ingår i: Experimental Thermal and Fluid Science. - : Elsevier. - 0894-1777 .- 1879-2286. ; , s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Very-large-scale structures in pipe flows are characterized using an extended Proper Orthogonal Decomposition (POD)-based estimation. Synchronized non-time-resolved Particle Image Velocimetry (PIV) and time-resolved, multi-point hot-wire measurements are integrated for the estimation of turbulent structures in a pipe flow at friction Reynolds numbers of 9500 and 20000. This technique enhances the temporal resolution of PIV, thus providing a time-resolved description of the dynamics of the large-scale motions. The experiments are carried out in the CICLoPE facility. A novel criterion for the statistical characterization of the large-scale motions is introduced, based on the time-resolved dynamically-estimated POD time coefficients. It is shown that high-momentum events are less persistent than low-momentum events, and tend to occur closer to the wall. These differences are further enhanced with increasing Reynolds number.
  •  
3.
  • Guemes, A., et al. (författare)
  • Flow organization in the wake of a rib in a turbulent boundary layer with pressure gradient
  • 2019
  • Ingår i: Experimental Thermal and Fluid Science. - : ELSEVIER SCIENCE INC. - 0894-1777 .- 1879-2286. ; 108, s. 115-124
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of a streamwise pressure gradient on the wake developed by wall-attached square ribs in a turbulent boundary layer is investigated experimentally. Favourable-, adverse- and zero-pressure-gradient conditions (FPG, APG and ZPG, respectively) are reproduced at matched friction Reynolds number and non-dimensional rib height. Flow-field measurements are carried out by means of Particle Image Velocimetry (PIV). Turbulence statistics are extracted at high resolution using an Ensemble Particle Tracking Velocimetry approach. Modal analysis is performed with Proper Orthogonal Decomposition (POD). We demonstrate that a non-dimensional expression of the pressure gradient and shear stress is needed to quantify the pressure-gradient effects in the wake developing past wall-attached ribs. We suggest the Clauser pressure-gradient parameter beta, commonly used in the literature for the characterization of turbulent boundary layers under the effect of a pressure gradient, as a suitable parameter. The results show that, in presence of an adverse pressure gradient, the recirculation region downstream of the rib is increased in size, thus delaying the reattachment, and that the peak of turbulence intensity and the shed eddies are shifted towards larger wall-normal distances than in the ZPG case. The observed changes with respect to the ZPG configuration appear more intense for larger magnitude of beta, which are more likely to be obtained in APG than in FPG due to the reduced skin friction and increased displacement thickness.
  •  
4.
  • Guemes, A., et al. (författare)
  • From coarse wall measurements to turbulent velocity fields through deep learning
  • 2021
  • Ingår i: Physics of fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 33:7
  • Tidskriftsartikel (refereegranskat)abstract
    • This work evaluates the applicability of super-resolution generative adversarial networks (SRGANs) as a methodology for the reconstruction of turbulent-flow quantities from coarse wall measurements. The method is applied both for the resolution enhancement of wall fields and the estimation of wall-parallel velocity fields from coarse wall measurements of shear stress and pressure. The analysis has been carried out with a database of a turbulent open-channel flow with a friction Reynolds number Re-tau = 180 generated through direct numerical simulation. Coarse wall measurements have been generated with three different downsampling factors f(d) = [4, 8, 16] from the high-resolution fields, and wall-parallel velocity fields have been reconstructed at four inner-scaled wall-normal distances ythorn = [15, 30, 50, 100]. We first show that SRGAN can be used to enhance the resolution of coarse wall measurements. If compared with the direct reconstruction from the sole coarse wall measurements, SRGAN provides better instantaneous reconstructions, in terms of both mean-squared error and spectral-fractional error. Even though lower resolutions in the input wall data make it more challenging to achieve highly accurate predictions, the proposed SRGAN-based network yields very good reconstruction results. Furthermore, it is shown that even for the most challenging cases, the SRGAN is capable of capturing the large-scale structures that populate the flow. The proposed novel methodology has a great potential for closed-loop control applications relying on non-intrusive sensing. Published under an exclusive license by AIP Publishing.
  •  
5.
  • Mallor, Fermin, et al. (författare)
  • Modal decomposition of flow fields and convective heat transfer maps : An application to wall-proximity square ribs
  • 2019
  • Ingår i: Experimental Thermal and Fluid Science. - : Elsevier. - 0894-1777 .- 1879-2286. ; , s. 517-527
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work the modal decomposition of convective heat transfer distributions in turbulent flows is explored. The organization and thermal footprint of the turbulent flow features generated downstream of wall-proximity two-dimensional square ribs immersed in a turbulent boundary layer are investigated experimentally. This study employs modal decomposition to investigate whether this analysis can allow identifying which characteristics of the flow topology are responsible for the Nusselt-number augmentation, aiming to uncover the underlying physics of heat-transfer enhancement. Heat transfer and flow velocity measurements are performed at a Reynolds number (based on the free-stream velocity and rib side-length) equal to 4600. Square ribs are tested for two different gap spacings from the wall (0.25 and 0.5 ribs side-length) and in wall-attached configuration. A low-thermal-inertia heat transfer sensor coupled with high-repetition-rate Infrared (IR) thermography is designed to study the unsteady variation of the convective heat-transfer coefficient downstream of the obstacles. Flow-field measurements are performed with non-time-resolved Particle Image Velocimetry (PIV). A modal analysis with Proper Orthogonal Decomposition (POD) is applied to both convective heat-transfer maps and velocity-fields. The comparison of the Nusselt-number spatial modes of the clean turbulent boundary layer configuration and of the configurations with the ribs shows a variation of the spatial pattern associated with oscillations with strong spanwise coherence, opposed to the thin elongated streaks which dominate the convective heat transfer in the clean turbulent boundary layer. In configurations where the convective heat transfer is enhanced by coherent structures located close to the wall, similar eigenspectra are observed for both flow field and convective heat transfer modes. The results of the modal analysis support a picture of a direct relation between the coherence of near-wall flow features and heat-transfer augmentation, providing a statistical evidence for the fact that near-wall coherent eddies are extremely efficient in enhancing heat transfer.
  •  
6.
  • Sanmiguel Vila, C., et al. (författare)
  • Experimental realisation of near-equilibrium adverse-pressure-gradient turbulent boundary layers
  • 2020
  • Ingår i: Experimental Thermal and Fluid Science. - : Elsevier Inc.. - 0894-1777 .- 1879-2286. ; 112
  • Tidskriftsartikel (refereegranskat)abstract
    • A new experimental database of adverse-pressure-gradient (APG) turbulent boundary layers (TBLs) obtained through hot-wire anemometry and oil-film interferometry covering a momentum–loss Reynolds number 450<Reθ<23450 and Clauser pressure-gradient-parameter range up to β≈2.4 is presented. Both increasing and approximately constant β distributions with the same upstream history are characterised. Turbulence statistics are compared among the different pressure-gradient distributions with additional numerical and experimental zero-pressure-gradient (ZPG) TBL data. Cases at approximately constant β, which can be considered as canonical representations of the boundary layer under a certain pressure-gradient magnitude, exhibit skin-friction and shape-factor curves consistent with the ones proposed by Vinuesa et al. (2017). These curves show a similar scaling behaviour as those proposed by Nagib et al. (2007) for ZPG TBLs. The pre-multiplied power-spectral density is employed to study the differences in the large-scale energy content throughout the boundary layer. Two different large-scale phenomena are identified, the first one related to the pressure gradient and the second one (also present in high-Re ZPG TBLs) due to the Reynolds number. Recently proposed scaling laws by Kitsios et al. (2016) and Maciel et al. (2018) are tested over a wider Reynolds-number range and for different β cases. The mean velocity and streamwise velocity fluctuation profiles are found to be dependent on the upstream development. The mean velocity profile is found to be self-similar only in the outer region, in agreement with classical theory. The mean and higher-order statistics of the new APG TBL database are made available under www.flow.kth.se.
  •  
7.
  • Sanmiguel Vila, C., et al. (författare)
  • Identifying well-behaved turbulent boundary layers
  • 2017
  • Ingår i: Progress in Turbulence VII. - Cham : Springer Science+Business Media B.V.. - 9783319579337 ; , s. 67-72
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a study focused on the development of zero-pressure-gradient turbulent boundary layers (ZPG TBL) towards well-behaved conditions in the low Reynolds-number range. A new method to assess the length required for the ZPG TBL to exhibit well-behaved conditions is proposed. The proposed method is based on the diagnostic-plot concept (Alfredsson et al., Phys. Fluids, 23:041702, 2011), which only requires mean and turbulence intensity measurements in the outer region of the boundary layer. In contrast to the existing methods which rely on empirical skin-friction curves, shape-factor or wake-parameter, the quantities required by this method are generally much easier to measure. To test the method, the evolution of six different tripping configurations, including weak, late and strong overtripping, are studied in a wind-tunnel experiment to assess the convergence of ZPG TBLs towards well-behaved conditions in the momentum-thickness based Reynolds-number range 500 < Reθ < 4000.
  •  
8.
  • Sanmiguel Vila, C., et al. (författare)
  • Large-scale energy in turbulent boundary layers : Reynolds-number and pressure-gradient effects
  • 2019
  • Ingår i: Springer Proceedings in Physics. - Cham : Springer Nature. ; , s. 69-74
  • Konferensbidrag (refereegranskat)abstract
    • Adverse-pressure-gradient (APG) turbulent boundary layers (TBLs) are studied using hot-wire measurements which cover a Clauser pressure-gradient-parameter range up to β ≈ 2.4. Constant and non-constant β distributions with the same upstream history are studied. The pre-multiplied power-spectral density is employed to study the differences in the large-scale energy content throughout the boundary layer. Two different large-scale phenomena are identified, the first one due to the pressure gradient and the second one due to the Reynolds number; the latter is also present in high-Re ZPG TBLs. A decomposition of the streamwise velocity fluctuations using a temporal filter shows that the small-scale velocity fluctuations do not scale in APG TBL flows since the effect of the large-scale features extends up to the near-wall region.
  •  
9.
  • Sanmiguel Vila, C., et al. (författare)
  • On the identification of well-behaved turbulent boundary layers
  • 2017
  • Ingår i: Journal of Fluid Mechanics. - : Cambridge University Press. - 0022-1120 .- 1469-7645. ; 822, s. 109-138
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper introduces a new method based on the diagnostic plot (Alfredsson et al., Phys. Fluids, vol. 23, 2011, 041702) to assess the convergence towards a well-behaved zero-pressure-gradient (ZPG) turbulent boundary layer (TBL). The most popular and well-understood methods to assess the convergence towards a well-behaved state rely on empirical skin-friction curves (requiring accurate skin-friction measurements), shape-factor curves (requiring full velocity profile measurements with an accurate wall position determination) or wake-parameter curves (requiring both of the previous quantities). On the other hand, the proposed diagnostic-plot method only needs measurements of mean and fluctuating velocities in the outer region of the boundary layer at arbitrary wall-normal positions. To test the method, six tripping configurations, including optimal set-ups as well as both under- and overtripped cases, are used to quantify the convergence of ZPG TBLs towards well-behaved conditions in the Reynolds-number range covered by recent high-fidelity direct numerical simulation data up to a Reynolds number based on the momentum thickness and free-stream velocity of approximately 4000 (corresponding to 2.5 m from the leading edge) in a wind-tunnel experiment. Additionally, recent high-Reynolds-number data sets have been employed to validate the method. The results show that weak tripping configurations lead to deviations in the mean flow and the velocity fluctuations within the logarithmic region with respect to optimally tripped boundary layers. On the other hand, a strong trip leads to a more energized outer region, manifested in the emergence of an outer peak in the velocity-fluctuation profile and in a more prominent wake region. While established criteria based on skin-friction and shape-factor correlations yield generally equivalent results with the diagnostic-plot method in terms of convergence towards a well-behaved state, the proposed method has the advantage of being a practical surrogate that is a more efficient tool when designing the set-up for TBL experiments, since it diagnoses the state of the boundary layer without the need to perform extensive velocity profile measurements.
  •  
10.
  • Sanmiguel Vila, C., et al. (författare)
  • Separating adverse-pressure-gradient and Reynolds-number effects in turbulent boundary layers
  • 2020
  • Ingår i: Physical Review Fluids. - : American Physical Society. - 2469-990X. ; 5:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Zero pressure-gradient (ZPG) turbulent boundary layers (TBLs) at high Reynolds numbers (Re) and TBLs with adverse pressure gradients (APGs) share some similarities such as the emergence of an outer peak in the streamwise variance profile related to the enhancement of large-scale energy. Reynolds-number and pressure-gradient effects tend to cause such an energizing of the outer-layer structures, which makes it difficult to distinguish them, mainly because both effects are usually coupled. Using two experimental data sets of ZPG and APG TBLs in which Re and pressure gradient are analyzed independently, the present paper shows that the two effects have different imprints on the flow. In particular, the analysis shows that (1) the small-scale energy in APG TBLs is, contrary to canonical ZPG TBLs, not universal, but is dependent on the APG strength, (2) the APG enhances both the small- and large-scale energy in the outer region, and (3) the outer-peak location and the amplitude of the streamwise variance scale differently for increasing Re and APG magnitude. These findings may have ramifications on the development of turbulence models since the pressure gradient has a direct influence on the near-wall dynamics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy