SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Drouin R) srt2:(2020-2024)"

Sökning: WFRF:(Drouin R) > (2020-2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gordon, I.E., et al. (författare)
  • The HITRAN2020 molecular spectroscopic database
  • 2022
  • Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer. - : Elsevier. - 0022-4073 .- 1879-1352. ; 277
  • Tidskriftsartikel (refereegranskat)abstract
    • The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition.
  •  
2.
  •  
3.
  • Parks, Michelle M., et al. (författare)
  • 2021-2023 Unrest and Geodetic Observations at Askja Volcano, Iceland
  • 2024
  • Ingår i: GEOPHYSICAL RESEARCH LETTERS. - 0094-8276 .- 1944-8007. ; 51:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Unrest began in July 2021 at Askja volcano in the Northern Volcanic Zone (NVZ) of Iceland. Its most recent eruption, in 1961, was predominantly effusive and produced similar to 0.1 km3 lava field. The last plinian eruption at Askja occurred in 1875. Geodetic measurements between 1983 and 2021 detail subsidence of Askja, decaying in an exponential manner. At the end of July 2021, inflation was detected at Askja volcano, from GNSS observations and Sentinel-1 interferograms. The inflationary episode can be divided into two periods from the onset of inflation until September 2023. An initial period until 20 September 2021 when geodetic models suggest transfer of magma (or magmatic fluids) from within the shallowest part of the magmatic system (comprising an inflating and deflating source), potentially involving silicic magma. A following period when one source of pressure increase at shallow depth can explain the observations. Askja volcano, situated in the Northern Volcanic Zone in Iceland, has been quiet since its last eruption in 1961, with surface deformation measurements from 1983 to 2021 displaying a decaying subsidence signal within the Askja caldera. However, at the end of July 2021, the volcano began to inflate. This was detected on both GNSS and satellite observations. As of September 2023, similar to 65 cm of uplift had been measured at GNSS station OLAC. Modeling of surface deformation measurements indicates that the inflation was triggered by upward migration of melt (or magmatic fluids). At the end of July 2021, Askja volcano began to inflate-detected on both GNSS and satellite observations, ending 1983-2021 subsidence Geodetic modeling indicates upward migration of magma, feeding a magma body at an inferred depth of 2.5-3.1 km under the main Askja caldera Start of unrest was associated with magma transfer within the upper part of the system, followed by possible additional influx from depth
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy