SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Du Zaifa) srt2:(2023)"

Sökning: WFRF:(Du Zaifa) > (2023)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Kai, et al. (författare)
  • Metal thermopile infrared detector with vertical graphene
  • 2023
  • Ingår i: Wuli Xuebao/Acta Physica Sinica. - : Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. - 1000-3290. ; 72:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermopile infrared detector is a kind of detector device mainly composed of thermocouple as the basic unit. Because of its simple principle, no need of cooling equipment, and other advantages, it has been widely used in various fields of production and life. However, the absorption rates of the materials in conventional thermopile devices are poor, and the majority of them are incompatible with microfabrication methods. In this work, a metal thermopile infrared detector with vertical graphene (VG) is designed and fabricated. The VG is grown via plasma enhanced chemical vapor deposition, and retained at the device’s thermal ends to provide the thermopile IR detector’s wideband and high response characteristics. The detector achieves a room temperature responsivity reaching a value as high as 1.53 V/W at 792 nm, which can increase the response results about 28 times and reduce the response time to 0.8 ms compared with the thermopile detector without VG. After systematically measuring the response results, it is finally found that there are three main mechanisms responsible for the response on the composite device. The first one is the response generated by the metal thermopile itself alone. The second one is the response increased eventually by the contribution of VG covered at the metal thermal junction that expands the temperature difference. The last one is the response generated by the temperature gradient existing inside the VG on the surface of the device after the absorption of heat. The portion of each partial response mechanism in the total response is also analyzed, providing a new reference direction for analyzing the response generation mechanism of thermopile detectors with other absorbing materials. The process is compatible with the microfabrication, while the device performance is enhanced and suitable for mass production. Furthermore, by utilizing the surface plasmon resonance to combine VG with metal nanoparticles, the material’ s light absorption is found to be enhanced significantly under the same conditions, and the resulting thermal voltage can be increased to 6 times. The results indicate that VG promises to possess practical applications, in many fields such as photoelectric sensing and power production devices. This technology provides a new method to manufacture high-performance thermopile infrared detectors and other sensor devices.
  •  
2.
  • Xiong, Fangzhu, et al. (författare)
  • Transfer-free rapid growth of 2-inch wafer-scale patterned graphene as transparent conductive electrodes and heat spreaders for GaN LEDs
  • 2023
  • Ingår i: npj 2D Materials and Applications. - 2397-7132. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A technique for the transfer-free growth of 2-inch wafer-scale patterned graphene directly on GaN LED epilayers is introduced. High-quality graphene as transparent electrodes and heat spreaders is synthesized directly on GaN by PECVD at only 600 °C deposition temperature and within 3 min growth time. Co acts as both the catalyst for graphene growth and the dry etching mask for GaN mesas, which greatly improves the efficiency of the semiconductor device process. Elegantly, the graphene growth is in accordance with the shape of Co, which offers a lithography-free patterning technique of the graphene. Afterward, using our penetration etching method through the PMMA and graphene layers, the Co is peacefully removed, and in-situ Ohmic contact is achieved between the graphene and p-GaN where the contact resistivity is only 0.421 Ω cm2. The graphene sheet resistance is as low as 631.2 Ω sq−1. The device is also superior to the counterpart graphene-free LED in terms of heat spreading behavior, as evidenced by the lower junction temperature and thermal resistance. Most importantly, the developed technique produces graphene with excellent performance and is intrinsically more scalable, controllable, and semiconductor industry compatible than traditionally transferred graphene.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Sun, Jie, 1977 (2)
Du, Zaifa (2)
Tang, Peng Hao (2)
Liu, Ming (1)
Li, Xuan (1)
Xu, Chen (1)
visa fler...
Li, Kai (1)
Yan, Qun (1)
Dong, Y. B. (1)
Xiong, Fangzhu (1)
Guo, Weiling (1)
Qian, Fengsong (1)
Mei, Yu (1)
Li, Long Fei (1)
Guo, Wei Ling (1)
Feng, Shiwei (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (2)
Språk
Engelska (1)
Kinesiska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
Teknik (1)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy