SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Echbarthi Meriem) srt2:(2015)"

Sökning: WFRF:(Echbarthi Meriem) > (2015)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Echbarthi, Meriem, et al. (författare)
  • Distinct Trafficking of Cell Surface and Endosomal TIM-1 to the Immune Synapse
  • 2015
  • Ingår i: Traffic : the International Journal of Intracellular Transport. - : Wiley. - 1398-9219 .- 1600-0854. ; 16:11, s. 1193-1207
  • Tidskriftsartikel (refereegranskat)abstract
    • The T cell costimulatory molecule TIM-1 (T cell/transmembrane, mucin and immunoglobulin domain protein 1) sorts mainly to endosomes in lymphoid cells. At difference from the cell surface protein, endosomal TIM-1 translocates to the immune synapse (IS), where it can contribute to antigen-dependent T cell costimulation. TIM-1 ligands increase the amount of cell surface protein, preventing its traffic to the IS. The bipolar sorting of TIM-1 observed during IS formation is determined by differences in its subcellular location, and probably modulates antigen-driven immune responses. The T-cell/transmembrane, mucin and immunoglobulin domain protein 1 (TIM-1) is a phosphatidlyserine (PtdSer) receptor and a T-cell costimulatory molecule linked to the development of atopic diseases. TIM-1 locates preferentially in intracellular compartments. Here we show that in human and mouse lymphoid cells, TIM-1 localizes in different types of endosomes and that its domain structure is important for protein sorting to intracellular vesicles. The BALB/c mouse TIM-1 protein, which has a longer mucin domain, is sorted more efficiently to endosomes than the shorter C57BL/6 variant. High affinity ligands such as PtdSer increase the amount of cell surface TIM-1; the protein also polarizes toward cell contacts with apoptotic cells. The large pool of intracellular TIM-1 translocates to the immune synapse (IS) with the CD3-TCR (T-cell receptor) complex and colocalizes to the central supramolecular activation cluster (cSMAC). In contrast, cell surface TIM-1 does not traffic to the IS, but is located away from it. The bipolar TIM-1 sorting observed during IS formation is determined by differences in its subcellular location, and might modulate antigen-driven immune responses. © 2015 John Wiley & Sons A/S.
  •  
2.
  • Spiess, Matthias, et al. (författare)
  • Over-Expression Analysis of All Eight Subunits of the Molecular Chaperone CCT in Mammalian Cells Reveals a Novel Function for CCTdelta
  • 2015
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 427:17, s. 2757-2764
  • Tidskriftsartikel (refereegranskat)abstract
    • Chaperonin containing tailless complex polypeptide 1 (CCT) forms a classical chaperonin barrel structure where two rings of subunits surround a central cavity. Each ring consists of eight distinct subunits, creating a complex binding interface that makes CCT unique among the chaperonins. In addition to acting as a multimeric chaperonin, there is increasing evidence indicating that the CCT subunits, when monomeric, possess additional functions. Here we assess the role of the CCT subunits individually, using a GFP (green fluorescent protein) tagging approach to express each of the subunits in their monomeric form in cultured mammalian cells. Over-expression of CCTdelta, but not the other seven CCT subunits, results in the appearance of numerous protrusions at the cell surface. Two point mutations, one in the apical domain and one in the ATP binding pocket of CCTdelta, that abolish protrusion formation have been identified, consistent with the apical domain containing a novel interaction site that is influenced by the ATPase activity in the equatorial domain. Structured illumination microscopy, together with sub-cellular fractionation, reveals that only the wild-type CCTdelta is associated with the plasma membrane, thus connecting spatial organization with surface protrusion formation. Expression of the equivalent subunit in yeast, GFP-Cct4, rescues growth of the temperature-sensitive strain cct4-1 at the non-permissive temperature, indicative of conserved subunit-specific activities for CCTdelta. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-ncV4.0/).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy