SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Egelkraut Dagmar) srt2:(2019)"

Sökning: WFRF:(Egelkraut Dagmar) > (2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rheubottom, Sarah, I, et al. (författare)
  • Hiding in the background : community-level patterns in invertebrate herbivory across the tundra biome
  • 2019
  • Ingår i: Polar Biology. - : Springer. - 0722-4060 .- 1432-2056. ; 42:10, s. 1881-1897
  • Tidskriftsartikel (refereegranskat)abstract
    • Invertebrate herbivores depend on external temperature for growth and metabolism. Continued warming in tundra ecosystems is proposed to result in increased invertebrate herbivory. However, empirical data about how current levels of invertebrate herbivory vary across the Arctic is limited and generally restricted to a single host plant or a small group of species, so predicting future change remains challenging. We investigated large-scale patterns of invertebrate herbivory across the tundra biome at the community level and explored how these patterns are related to long-term climatic conditions and year-of-sampling weather, habitat characteristics, and aboveground biomass production. Utilizing a standardized protocol, we collected samples from 92 plots nested within 20 tundra sites during summer 2015. We estimated the community-weighted biomass lost based on the total leaf area consumed by invertebrates for the most common plant species within each plot. Overall, invertebrate herbivory was prevalent at low intensities across the tundra, with estimates averaging 0.94% and ranging between 0.02 and 5.69% of plant biomass. Our results suggest that mid-summer temperature influences the intensity of invertebrate herbivory at the community level, consistent with the hypothesis that climate warming should increase plant losses to invertebrates in the tundra. However, most of the observed variation in herbivory was associated with other site level characteristics, indicating that other local ecological factors also play an important role. More details about the local drivers of invertebrate herbivory are necessary to predict the consequences for rapidly changing tundra ecosystems.
  •  
2.
  • Sitters, Judith, et al. (författare)
  • Long-term heavy reindeer grazing promotes plant phosphorus limitation in arctic tundra
  • 2019
  • Ingår i: Functional Ecology. - : John Wiley & Sons. - 0269-8463 .- 1365-2435. ; 33:7, s. 1233-1242
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. The potential of large mammalian herbivores to shift plant communities between nitrogen (N) and phosphorus (P) limitation has received little attention so far. However, herbivores can influence the cycling of these growth-limiting nutrients, and thereby affect plant nutrient limitation and productivity. Tundra ecosystems are nutrient-poor and commonly grazed by large herbivores like reindeer and may thus be responsive to such changes.2. Here, we examined the effect of long-term light and heavy reindeer grazing on nutrient limitation of plant growth in a Scandinavian arctic tundra. We are the first to conduct a factorial N and P fertilization experiment across the two grazing regimes in two functionally contrasting vegetation types: heath and meadow.3. Annual primary productivity (APP) showed contrasting responses to our fertilization treatments under light and heavy grazing. Under light grazing, APP increased in response to N + P additions in both the heath and meadow. Under heavy grazing, APP increased in response to N in the heath, with an additional positive effect of N + P combined, while APP increased in response to P and N + P additions in the meadow.4. These results clearly show that an increase in the grazing intensity of reindeer facilitated a shift towards more P-limited conditions in Scandinavian arctic tundra, by increasing N cycling without having a corresponding positive effect on P cycling. In the N-poor heath, reindeer increased soil N availability at least partly due to a shift towards more N-rich graminoids, while in the meadow, reindeer decreased soil P availability. The mechanisms behind this decrease remain unclear, but reindeer may simply export more P from the system than N due to their large P demand for the production of their antlers.5. Synthesis. We conclude that heavy and long-term reindeer grazing promoted a more P-limited tundra, thus experimentally confirming the potential of large mammalian herbivores to influence nutrient limitation of plant growth.
  •  
3.
  • Stark, Sari, et al. (författare)
  • Contrasting vegetation states do not diverge in soil organic matter storage : evidence from historical sites in tundra
  • 2019
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 100:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystems where severe disturbance has induced permanent shifts in vegetation and soil processes may represent alternative stable states. To date, little is known on how long-lasting changes in soil processes are following such disturbances, and how the changes in plant and soil processes between the alternative states eventually manifest themselves in soil organic matter (SOM) storage. Here, we analyzed plant density, the shrub : forb ratio, microbial respiration, extracellular enzyme activities and SOM stocks in soils of subarctic tundra and historical milking grounds, where reindeer herding induced a vegetation transition from deciduous shrubs to graminoids several centuries earlier but were abandoned a century ago. This provides the possibility to compare sites with similar topography, but highly contrasting vegetation for centuries. We found that enzymatic activities and N:P stoichiometry differed between control and disturbed sites, confirming that culturally induced vegetation shifts exert lasting impacts on tundra soil processes. Transition zones, where shrubs had encroached into the historical milking grounds during the past 50 yr, indicated that microbial activities for N and P acquisition changed more rapidly along a vegetation shift than those for microbial C acquisition. Although plant and soil processes differed between control and disturbed sites, we found no effect of historical vegetation transition on SOM stock. Across the study sites, soil SOM stocks were correlated with total plant density but not with the shrub : forb ratio. Our finding that SOM stock was insensitive to a centennial difference in plant community composition suggests that, as such, grazing-induced alternative vegetation states might not necessarily differ in SOM sequestration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy