SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehrsson H) srt2:(2015-2019)"

Sökning: WFRF:(Ehrsson H) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gentile, Giovanni, et al. (författare)
  • Patterns of neural activity in the human ventral premotor cortex reflect a whole-body multisensory percept
  • 2015
  • Ingår i: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 109, s. 328-340
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous research has shown that the integration of multisensory signals from the body in fronto-parietal association areas underlies the perception of a body part as belonging to ones physical self. What are the neural mechanisms that enable the perception of ones entire body as a unified entity? In one behavioral and one fMRI multivoxel pattern analysis experiment, we used a full-body illusion to investigate how congruent visuo-tactile signals from a single body part facilitate the emergence of the sense of ownership of the entire body. To elicit this illusion, participants viewed the body of a mannequin from the first-person perspective via head-mounted displays while synchronous touches were applied to the hand, abdomen, or leg of the bodies of the participant and the mannequin; asynchronous visuo-tactile stimuli served as controls. The psychometric data indicated that the participants perceived ownership of the entire artificial body regardless of the body segment that received the synchronous visuo-tactile stimuli. Based on multivoxel pattern analysis, we found that the neural responses in the left ventral premotor cortex displayed illusion-specific activity patterns that generalized across all tested pairs of body parts. Crucially, a tripartite generalization analysis revealed the whole-body specificity of these premotor activity patterns. Finally, we also identified multivoxel patterns in the premotor, intraparietal, and lateral occipital cortices and in the putamen that reflected multisensory responses specific to individual body parts. Based on these results, we propose that the dynamic formation of a whole-body percept may be mediated by neuronal populations in the ventral premotor cortex that contain visuo-tactile receptive fields encompassing multiple body segments.
  •  
2.
  • Guterstam, Arvid, et al. (författare)
  • Decoding illusory self-location from activity in the human hippocampus
  • 2015
  • Ingår i: Frontiers in Human Neuroscience. - : FRONTIERS MEDIA SA. - 1662-5161. ; 9:412
  • Tidskriftsartikel (refereegranskat)abstract
    • Decades of research have demonstrated a role for the hippocampus in spatial navigation and episodic and spatial memory. However, empirical evidence linking hippocampal activity to the perceptual experience of being physically located at a particular place in the environment is lacking. In this study, we used a multisensory out-of-body illusion to perceptually teleport six healthy participants between two different locations in the scanner room during high-resolution functional magnetic resonance imaging (fMRI). The participants were fitted with MRI-compatible head-mounted displays that changed their first-person visual perspective to that of a pair of cameras placed in one of two corners of the scanner room. To elicit the illusion of being physically located in this position, we delivered synchronous visuo-tactile stimulation in the form of an object moving toward the cameras coupled with touches applied to the participants chest. Asynchronous visuo-tactile stimulation did not induce the illusion and served as a control condition. We found that illusory self-location could be successfully decoded from patterns of activity in the hippocampus in all of the participants in the synchronous (P less than 0.05) but not in the asynchronous condition (Pgreater than 0.05). At the group-level, the decoding accuracy was significantly higher in the synchronous than in the asynchronous condition (P = 0.012). These findings associate hippocampal activity with the perceived location of the bodily self in space, which suggests that the human hippocampus is involved not only in spatial navigation and memory but also in the construction of our sense of bodily self-location.
  •  
3.
  •  
4.
  • Guterstam, Arvid, et al. (författare)
  • Posterior Cingulate Cortex Integrates the Senses of Self-Location and Body Ownership
  • 2015
  • Ingår i: Current Biology. - : Elsevier (Cell Press). - 0960-9822 .- 1879-0445. ; 25:11, s. 1416-1425
  • Tidskriftsartikel (refereegranskat)abstract
    • The senses of owning a body and being localized somewhere in space are two key components of human self-consciousness. Despite a wealth of neurophysiological and neuroimaging research on the representations of the spatial environment in the parietal and medial temporal cortices, the relationship between body ownership and self-location remains unexplored. To investigate this relationship, we used a multisensory out-of-body illusion to manipulate healthy participants perceived self-location, head direction, and sense of body ownership during high-resolution fMRI. Activity patterns in the hippocampus and the posterior cingulate, retrosplenial, and intraparietal cortices reflected the sense of self-location, whereas the sense of body ownership was associated with premotor-intraparietal activity. The functional interplay between these two sets of areas was mediated by the posterior cingulate cortex. These results extend our understanding of the role of the posterior parietal and medial temporal cortices in spatial cognition by demonstrating that these areas not only are important for ecological behaviors, such as navigation and perspective taking, but also support the perceptual representation of the bodily self in space. Our results further suggest that the posterior cingulate cortex has a key role in integrating the neural representations of self-location and body ownership.
  •  
5.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy