SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eichler David) srt2:(2005-2009)"

Sökning: WFRF:(Eichler David) > (2005-2009)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elsik, Christine G., et al. (författare)
  • The Genome Sequence of Taurine Cattle : A Window to Ruminant Biology and Evolution
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 324:5926, s. 522-528
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
  •  
2.
  • Mikkelsen, Tarjei, et al. (författare)
  • Initial sequence of the chimpanzee genome and comparison with the human genome
  • 2005
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 437:7055, s. 69-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.
  •  
3.
  • Taussig, Michael J., et al. (författare)
  • ProteomeBinders : planning a European resource of affinity reagents for analysis of the human proteome
  • 2007
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 4:1, s. 13-17
  • Tidskriftsartikel (refereegranskat)abstract
    • ProteomeBinders is a new European consortium aiming to establish a comprehensive resource of well-characterized affinity reagents, including but not limited to antibodies, for analysis of the human proteome. Given the huge diversity of the proteome, the scale of the project is potentially immense but nevertheless feasible in the context of a pan-European or even worldwide coordination.
  •  
4.
  • Zody, Michael, 1968-, et al. (författare)
  • Analysis of the DNA sequence and duplication history of human chromosome 15
  • 2006
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 440:7084, s. 671-675
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplication in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome.
  •  
5.
  • Church, Deanna M, et al. (författare)
  • Lineage-specific biology revealed by a finished genome assembly of the mouse
  • 2009
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 7:5, s. e1000112-
  • Tidskriftsartikel (refereegranskat)abstract
    • The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not.
  •  
6.
  • Juhl, David, et al. (författare)
  • Incidence and clinical significance of anti-PF4/heparin antibodies of the IgG, IgM, and IgA class in 755 consecutive patient samples referred for diagnostic testing for heparin-induced thrombocytopenia.
  • 2006
  • Ingår i: European Journal of Haematology. - : Wiley. - 0902-4441 .- 1600-0609. ; 76:5, s. 420-6
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Heparin-induced thrombocytopenia (HIT) is usually caused by anti-platelet factor 4 (PF4)/heparin antibodies, leading to intravascular platelet activation. These antibodies can be detected by PF4/polyanion antigen assays or platelet activation assays. While antigen assays are very sensitive and recognize immunoglobulin (Ig)G, IgA, and IgM antibodies, the role of IgM and IgA HIT-antibodies is debated. Platelet activation assays recognize IgG and are more specific for clinical HIT. METHODS: We analyzed sera from 755 consecutive patients referred for diagnostic testing for HIT using a PF4/heparin enzyme-linked immunosorbent assay (ELISA) for IgG, IgA, and IgM and by the heparin-induced platelet activation (HIPA) test. Clinical information was provided by the treating physicians. RESULTS: A total of 108 of 755 (14.3%) patients tested positive, 105 (13.9%) in the PF4/heparin IgG/A/M ELISA [28 (26.7%) only for IgM/A]; 53 (7.0%) sera were positive in the HIPA, of those 50 tested also positive in the ELISA. In 77 patients sufficient clinical information was provided. Available clinical information for 17 of the 28 patients who had only IgM and/or IgA detected showed plausible alternative (non-HIT) explanations in four of seven who had thromboembolic complications and in nine of 10 who had isolated HIT. CONCLUSION: Detection of IgG, IgM and IgA class antibodies by PF4/heparin ELISA yields a positive test result about twice as often as does a platelet activation assay, with only a minority of the additional patients detected likely having HIT. Thus, there is a potential for considerable over-diagnosis of HIT by laboratories that utilize only an ELISA for diagnostic testing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy