SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(El Seedi H. R.) ;srt2:(2015-2019)"

Sökning: WFRF:(El Seedi H. R.) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zahra, Maram Hussein, et al. (författare)
  • Alpinia zerumbet (Pers.) : Food and Medicinal Plant with Potential In Vitro and In Vivo Anti-Cancer Activities
  • 2019
  • Ingår i: Molecules. - : MDPI AG. - 1431-5157 .- 1420-3049. ; 24:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Aim: Plants play an important role in anti-cancer drug discovery, therefore, the current study aimed to evaluate the biological activity of Alpinia zerumbet (A. zerumbet) flowers. Methods: The phytochemical and biological criteria of A. zerumbet were in vitro investigated as well as in mouse xenograft model. Results: A. zerumbet extracts, specially CH2Cl2 and MeOH extracts, exhibited the highest potent anti-tumor activity against Ehrlich ascites carcinoma (EAC) cells. The most active CH2Cl2 extract was subjected to bioassay-guided fractionation leading to isolatation of the naturally occurring 5,6-dehydrokawain (DK) which was characterized by IR, MS, H-1-NMR and C-13-NMR. A. zerumbet extracts, specially MeOH and CH2Cl2 extracts, exhibited significant inhibitory activity towards tumor volume (TV). Furthermore, A. zerumbet extracts declined the high level of malonaldehyde (MDA) as well as elevated the levels of superoxide dismutase (SOD) and catalase (CAT) in liver tissue homogenate. Moreover, DK showed anti-proliferative action on different human cancer cell lines. The recorded IC50 values against breast carcinoma (MCF-7), liver carcinoma (Hep-G2) and larynx carcinoma cells (HEP-2) were 3.08, 6.8, and 8.7 mu g/mL, respectively. Conclusion: Taken together, these findings open the door for further investigations in order to explore the potential medicinal properties of A. zerumbet.
  •  
2.
  • Saifullah, S., et al. (författare)
  • Surface functionalized magnetic nanoparticles for targeted cancer therapy and diagnosis
  • 2019
  • Ingår i: Metal Nanoparticles for Drug Delivery and Diagnostic Applications. - : Elsevier Inc.. ; , s. 215-236
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • In the last few decades, magnetic nanoparticles (MNPs) have had significant interest and became more remarkable in the field of oncology. MNPs has been proven to be the most suitable and promising nanomaterials for tumor targeting. This is mainly due to its intrinsic magnetic property which makes them characteristic agents to inducing magnetic hyperthermia and magnetic resonance imaging. The MNPs have usually been employed for cancer imaging through a passive approach. The modern techniques have enabled multimodal imaging, drug delivery, and specific cells targeting by MNPs. To synthesize more extravagant MNPs, the design criteria considerations, such as core metal, hydrodynamic size, shape, surface coating, and molecular functionalization, become very essential. In this chapter, the design parameters of MNPs including surface functionalization and physiochemical properties are summarized to overcome biological barriers. Furthermore, the chemistry of MNPs surface modification is discussed in detail to describe its nature and binding type.
  •  
3.
  • Saeed, A., et al. (författare)
  • Synthesis, Antibacterial and Antileishmanial Activity, Cytotoxicity, and Molecular Docking of New Heteroleptic Copper(I) Complexes with Thiourea Ligands and Triphenylphosphine
  • 2018
  • Ingår i: Russian journal of general chemistry. - : MAIK NAUKA/INTERPERIODICA/SPRINGER. - 1070-3632 .- 1608-3350. ; 88:3, s. 541-550
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of copper(I) complexes with triphenylphosphine and N-acyl-N'-arylthioureas were synthesized and characterized by elemental analysis and IR and NMR (H-1, C-13, P-31) spectroscopy. The thiourea ligands and their copper(I) triphenylphosphine complexes were screened for antibacterial and antileishmanial activities and cytotoxicity. The synthesized compounds showed much better activity as compared to glucantime and Kanamycin used as reference drugs. The thiourea ligands showed better activity than their Cu(I) complexes. The molecular docking technique was utilized to ascertain the mechanism of action toward molecular targets (GP63 and 16S-rRNA A-site). It was found that the ligands and complexes were stabilized at the active site by electrostatic and hydrophobic forces, consistent with the corresponding experimental results. The in silico study of the binding pattern predicted that one of the synthesized ligands, N-(5-chloro-2-nitrophenyl)-N'-pentanoylthiourea, can serve as a potential surrogate for hit-to-lead generation and design of novel antibacterial and antileishmanial agents.
  •  
4.
  • Abdelmoniem, Amr M., et al. (författare)
  • Synthesis, Chemistry and Utilities of Diaminoazoles with Special Reference to 3,5-Diaminopyrazoles
  • 2018
  • Ingår i: Current Organic Synthesis. - : BENTHAM SCIENCE PUBL LTD. - 1570-1794 .- 1875-6271. ; 15:4, s. 487-514
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Although the chemistry of heteroaromatic monoamino azoles has been surveyed more than once in the last decade, the chemistry of the di- and triaminoazoles has not been reviewed. In this article we will survey the synthesis, chemistry and utility of the diaminoazoles. In this review, the chemistry of the diaminoazoles as well as their most important utilities will be surveyed. Objective: The review focuses on recent progress in diaminoazoles (i.e. diaminopyrazoles, diaminoimidazoles, diaminotriazoles and diaminothiazole) with especial references to diaminopyrazoles. The synthesis as well as pharmaceutical utilities are reported. There are several methods for synthesis of diaminopyrazoles. 3,5-Diaminopyrazole and its derivatives are prepared through the reaction of malononitrile or arylhydrazononitrile with hydrazine derivatives. 3,4-Diaminopyrazoles are prepared via nitration of 3-aminopyrazole with subsequent reduction of the produced compound. The diaminopyrazoles have several applications in cosmetic and pharmaceutical industries. They also have useful utilities as a constituent in oxidative hair dyes. Conclusion: We managed to report the common methods for the synthesis of diaminoazoles with especial reference to aminopyrazoles that are prepared through the reaction of malononitrile or hydrazononitriles with hydrazine derivatives. Some important applications that include pharmaceutical utilities such as hair dye constituents are reported.
  •  
5.
  • El-Seedi, Hesham R., et al. (författare)
  • Essential oils of aromatic Egyptian plants repel nymphs of the tick Ixodes ricinus (Acari : Ixodidae)
  • 2017
  • Ingår i: Experimental & applied acarology. - : Springer. - 0168-8162 .- 1572-9702. ; 73:1, s. 139-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the role of Ixodes ricinus (L.) (Acari: Ixodidae) in the transmission of many serious pathogens, personal protection against bites of this tick is essential. In the present study the essential oils from 11 aromatic Egyptian plants were isolated and their repellent activity against I. ricinus nymphs was evaluated Three oils (i.e. Conyza dioscoridis L., Artemisia herba-alba Asso and Calendula officinalis L.) elicited high repellent activity in vitro of 94, 84.2 and 82%, respectively. The most active essential oil (C. dioscoridis) was applied in the field at a concentration of 6.5 A mu g/cm(2) and elicited a significant repellent activity against I. ricinus nymphs by 61.1%. The most repellent plants C. dioscoridis, C. officinalis and A. herba-alba yielded essential oils by 0.17, 0.11 and 0.14%, respectively. These oils were further investigated using gas chromatography-mass spectrometry analysis. alpha-Cadinol (10.7%) and hexadecanoic acid (10.5%) were the major components of C. dioscoridis whereas in C. officinalis, alpha-cadinol (21.2%) and carvone (18.2%) were major components. Artemisia herba-alba contained piperitone (26.5%), ethyl cinnamate (9.5%), camphor (7.7%) and hexadecanoic acid (6.9%). Essential oils of these three plants have a potential to be used for personal protection against tick bites.
  •  
6.
  • El-Seedi, H. R., et al. (författare)
  • Hydroxycinnamic Acids : Natural Sources, Biosynthesis, Possible Biological Activities, and Roles in Islamic Medicine
  • 2017
  • Ingår i: Studies in Natural Products Chemistry. - : Elsevier B.V.. ; , s. 1-29
  • Bokkapitel (refereegranskat)abstract
    • Hydroxycinnamic acids are the most widely distributed phenolic acids in plants. Broadly speaking, they can be defined as compounds derived from cinnamic acid. They are present at high concentrations in many food products, including fruits, vegetables, tea, cocoa, and wine. Cinnamic acid has received great attention in oriental research where it has been used as an antioxidant in food additives in Asia and especially in medical studies in China after being proven to be an effective component of medicinal herbs used by traditional medicine. Cinnamic acid is a phenolic acid widely distributed in the plant kingdom. It presents a wide range of potential therapeutic effects useful in the treatments of cancer, diabetes, lung, and cardiovascular diseases, as well as hepatic, neuro-, and photoprotective effects and antimicrobial and antiinflammatory activities. Overall, the pharmaceutical potential of cinnamic acid can be attributed to its ability to scavenge free radicals. However, recent studies have revealed that cinnamic acid presents pharmacological properties beyond those related to its antioxidant activity, such as the ability to competitively inhibit HMG-CoA reductase and activate glucokinase, contributing to reduce hypercholesterolemia and hyperglycemia, respectively. A diet rich in hydroxycinnamic acids is thought to be associated with beneficial health effects such as a reduced risk of cardiovascular disease. The impact of hydroxycinnamic acids on health depends on their intake and pharmacokinetic properties. It can be found free, dimerized or esterified with proteins and polysaccharides in the cell wall, such as arabinoxylans in grasses and xyloglucans in bamboo. Cinnamic acid is an important biological and structural component of the plant cell wall. Due to its ability to stop radical chain reactions by resonance followed by polymerization, cinnamic acid offers protection against UV radiation and is responsible for cross-linking polysaccharides and other cell wall polymers. Cinnamic acid can be absorbed by the small intestine and excreted in the urine, where therapeutic efficacy is dependent on its physiological concentrations and pharmacokinetic properties, which include absorption, distribution, metabolism, and excretion of metabolites. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy, especially 2D NMR (COSY, NOESY, HMQC, and HMBC), are the most useful analytical techniques for the structural elucidation of hydroxycinnamic acids besides UV, IR, CD, X-ray analysis, and chemical degradation. In this chapter, we update the reader about the therapeutic properties of cinnamic acid, reviewing its dietary sources, the pharmacokinetic profile, antioxidant action mechanisms, and therapeutic effects in the treatment and prevention of various diseases, in order to provide a basis for understanding its pharmaceutical potential.
  •  
7.
  • Farag, Mohamed A., et al. (författare)
  • Phytochemical Profiles and Antimicrobial Activities of Allium cepa Red cv. and A. sativum Subjected to Different Drying Methods : A Comparative MS-Based Metabolomics
  • 2017
  • Ingår i: Molecules. - : MDPI AG. - 1431-5157 .- 1420-3049. ; 22:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants of the Allium genus produce sulphur compounds that give them a characteristic (alliaceous) flavour and mediate for their medicinal use. In this study, the chemical composition and antimicrobial properties of Allium cepa red cv. and A. sativum in the context of three different drying processes were assessed using metabolomics. Bulbs were dried using either microwave, air drying, or freeze drying and further subjected to chemical analysis of their composition of volatile and non-volatile metabolites. Volatiles were collected using solid phase micro-extraction (SPME) coupled to gas chromatography-mass spectrometry (GC/MS) with 42 identified volatiles including 30 sulphur compounds, four nitriles, three aromatics, and three esters. Profiling of the polar non-volatile metabolites via ultra-performance liquid chromatography coupled to high resolution MS (UPLC/MS) annotated 51 metabolites including dipeptides, flavonoids, phenolic acids, and fatty acids. Major peaks in GC/MS or UPLC/MS contributing to the discrimination between A. sativum and A. cepa red cv. were assigned to sulphur compounds and flavonoids. Whereas sulphur conjugates amounted to the major forms in A. sativum, flavonoids predominated in the chemical composition of A. cepa red cv. With regard to drying impact on Allium metabolites, notable and clear separations among specimens were revealed using principal component analysis (PCA). The PCA scores plot of the UPLC/MS dataset showed closer metabolite composition of microwave dried specimens to freeze dried ones, and distant from air dried bulbs, observed in both A. cepa and A. sativum. Compared to GC/MS, the UPLC/MS derived PCA model was more consistent and better in assessing the impact of drying on Allium metabolism. A phthalate derivative was found exclusively in a commercial garlic preparation via GC/MS, of yet unknown origin. The freeze dried samples of both Allium species exhibited stronger antimicrobial activities compared to dried specimens with A. sativum being in general more active than A. cepa red cv.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy