SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elbeltagi Ahmed) srt2:(2024)"

Sökning: WFRF:(Elbeltagi Ahmed) > (2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdel-Hameed, Amal Mohamed, et al. (författare)
  • Estimation of Potato Water Footprint Using Machine Learning Algorithm Models in Arid Regions
  • 2024
  • Ingår i: Potato Research. - : Springer Nature. - 0014-3065 .- 1871-4528.
  • Tidskriftsartikel (refereegranskat)abstract
    • Precise assessment of water footprint to improve the water consumption and crop yield for irrigated agricultural efficiency is required in order to achieve water management sustainability. Although Penman-Monteith is more successful than other methods and it is the most frequently used technique to calculate water footprint, however, it requires a significant number of meteorological parameters at different spatio-temporal scales, which are sometimes inaccessible in many of the developing countries such as Egypt. Machine learning models are widely used to represent complicated phenomena because of their high performance in the non-linear relations of inputs and outputs. Therefore, the objectives of this research were to (1) develop and compare four machine learning models: support vector regression (SVR), random forest (RF), extreme gradient boost (XGB), and artificial neural network (ANN) over three potato governorates (Al-Gharbia, Al-Dakahlia, and Al-Beheira) in the Nile Delta of Egypt and (2) select the best model in the best combination of climate input variables. The available variables used for this study were maximum temperature (Tmax), minimum temperature (Tmin), average temperature (Tave), wind speed (WS), relative humidity (RH), precipitation (P), vapor pressure deficit (VPD), solar radiation (SR), sown area (SA), and crop coefficient (Kc) to predict the potato blue water footprint (BWF) during 1990–2016. Six scenarios (Sc1–Sc6) of input variables were used to test the weight of each variable in four applied models. The results demonstrated that Sc5 with the XGB and ANN model gave the most promising results to predict BWF in this arid region based on vapor pressure deficit, precipitation, solar radiation, crop coefficient data, followed by Sc1. The created models produced comparatively superior outcomes and can contribute to the decision-making process for water management and development planners. 
  •  
2.
  • Ehsan, Muhsan, et al. (författare)
  • Groundwater delineation for sustainable improvement and development aided by GIS, AHP, and MIF techniques
  • 2024
  • Ingår i: Applied water science. - : Springer Science and Business Media Deutschland GmbH. - 2190-5487 .- 2190-5495. ; 14:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Exploration of groundwater is an integral part of viable resource growth for society, economy, and irrigation. However, uncontrolled utilization is mainly reported in urban and industries due to the increasing demand for water in semi-arid and arid regions of the world. In the background, groundwater demarcation for potential areas is vital in meeting necessary demand. The current study applied an integrated method comprising the analytical hierarchy process (AHP), multiple influence factors (MIF), combined with a linear regression curve and observatory well data for groundwater prospects mapping. Thematic maps such as flow direction, flow accumulation, elevation map, land use land cover, slope, soil texture, hill shade, geomorphology, normalized vegetation index, and groundwater depth map were generated utilizing remote sensing techniques. The relative weight of each parameter was estimated and then assigned to major and minor parameters. Potential zones for groundwater were classified into five classes, namely very good, good, moderate, poor, and very poor, based on AHP and MIF methods. A spatially explicit sensitivity and uncertainty analysis method to a GIS-based multi-criteria groundwater potential zone model is presented in this research. The study addressed a flaw in the way groundwater potential mapping results are typically presented in GIS-based multi-criteria decision analysis studies, where discrete class outputs are used without any assessment of their certainty with respect to variations in criteria weighting, which is one of the main contributors to output uncertainty. The study region is categorized based on inferred results as very poor, poor, marginal, and very good in potential ground quality 3.04 km2 is considered extremely poor, 3.33 km2 is considered poor, 64.42 km2 is considered very good, and 85.84 km2 is considered marginal zones, which shows reliable and potential implementation. The outcomes of AHP and MIF were validated by linear regression curve and actual water table in a study area. The study results help to formulate the potential demarcation of groundwater zones for future sustainable planning and development of groundwater sources. This study may be helpful to provide a cost-effective solution to water resources crises. The current study finding may be helpful for decision-makers and administrative professionals for sustainable management of groundwater resources for present and future demands.
  •  
3.
  • Raza, Ali, et al. (författare)
  • Use of gene expression programming to predict reference evapotranspiration in different climatic conditions
  • 2024
  • Ingår i: Applied water science. - : Springer Nature. - 2190-5487 .- 2190-5495. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Evapotranspiration plays a pivotal role in the hydrological cycle. It is essential to develop an accurate computational model for predicting reference evapotranspiration (RET) for agricultural and hydrological applications, especially for the management of irrigation systems, allocation of water resources, assessments of utilization and demand and water use allocations in rural and urban areas. The limitation of climatic data to estimate RET restricted the use of standard Penman–Monteith method recommended by food and agriculture organization (FAO-PM56). Therefore, the current study used climatic data such as minimum, maximum and mean air temperature (Tmax, Tmin, Tmean), mean relative humidity (RHmean), wind speed (U) and sunshine hours (N) to predict RET using gene expression programming (GEP) technique. In this study, a total of 17 different input meteorological combinations were used to develop RET models. The obtained results of each GEP model are compared with FAO-PM56 to evaluate its performance in both training and testing periods. The GEP-13 model (Tmax, Tmin, RHmean, U) showed the lowest errors (RMSE, MAE) and highest efficiencies (R2, NSE) in semi-arid (Faisalabad and Peshawar) and humid (Skardu) conditions while GEP-11 and GEP-12 perform best in arid (Multan, Jacobabad) conditions during training period. However, GEP-11 in Multan and Jacobabad, GEP-7 in Faisalabad, GEP-1 in Peshawar, GEP-13 in Islamabad and Skardu outperformed in testing  period. In testing phase, the GEP models R2 values reach 0.99, RMSE values ranged from 0.27 to 2.65, MAE values from 0.21 to 1.85 and NSE values from 0.18 to 0.99. The study findings indicate that GEP is effective in predicting RET when there are minimal climatic data. Additionally, the mean relative humidity was identified as the most relevant factor across all climatic conditions. The findings of this study may be used to the planning and management of water resources in practical situations, as they demonstrate the impact of input variables on the RET associated with different climatic conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy