SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Enache Lucica) "

Sökning: WFRF:(Enache Lucica)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Saguti, Fredy, et al. (författare)
  • Surveillance of wastewater revealed peaks of SARS-CoV-2 preceding those of hospitalized patients with COVID-19.
  • 2021
  • Ingår i: Water research. - : Elsevier BV. - 1879-2448 .- 0043-1354. ; 189
  • Tidskriftsartikel (refereegranskat)abstract
    • SARS-CoV-2 was discovered among humans in Wuhan, China in late 2019, and then spread rapidly, causing a global pandemic. The virus was found to be transmitted mainly by respiratory droplets from infected persons or by direct contact. It was also shown to be excreted in feces, why we investigated whether the virus could be detected in wastewater and if so, to which extent its levels reflects its spread in society. Samples of wastewater from the city of Gothenburg, and surrounding municipalities in Sweden were collected daily from mid-February until June 2020 at the Rya wastewater treatment plant. Flow proportional samples of wastewater were collected to ensure that comparable amounts were obtained for analysis. Daily samples were pooled into weekly samples. Virus was concentrated on a filter and analyzed by RT-qPCR. The amount of SARS-CoV-2 varied with peaks approximately every four week, preceding variations in number of newly hospitalized patients by 19-21 days. At that time virus testing for COVID-19 was limited to patients with severe symptoms. Local differences in viral spread was shown by analyzing weekly composite samples of wastewater from five sampling sites for four weeks. The highest amount of virus was found from the central, eastern, and northern parts of the city. SARS-CoV-2 was also found in the treated effluent wastewater from the WWTP discharged into the recipient, the Göta River, although with a reduction of 4-log10. The viral peaks with regular temporal intervals indicated that SARS-CoV-2 may have a cluster spread, probably reflecting that the majority of infected persons only spread the disease during a few days. Our results are important for both the planning of hospital care and to rapidly identify and intervene against local spread of the virus.
  •  
2.
  • Saguti, Fredy, et al. (författare)
  • Surveillance of wastewater revealed peaks of SARS-CoV-2 preceding those of hospitalized patients with COVID-19
  • 2021
  • Ingår i: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 189
  • Tidskriftsartikel (refereegranskat)abstract
    • SARS-CoV-2 was discovered among humans in Wuhan, China in late 2019, and then spread rapidly, causing a global pandemic. The virus was found to be transmitted mainly by respiratory droplets from infected persons or by direct contact. It was also shown to be excreted in feces, why we investigated whether the virus could be detected in wastewater and if so, to which extent its levels reflects its spread in society. Samples of wastewater from the city of Gothenburg, and surrounding municipalities in Sweden were collected daily from mid-February until June 2020 at the Rya wastewater treatment plant. Flow proportional samples of wastewater were collected to ensure that comparable amounts were obtained for analysis. Daily samples were pooled into weekly samples. Virus was concentrated on a filter and analyzed by RT-qPCR. The amount of SARS-CoV-2 varied with peaks approximately every four week, preceding variations in number of newly hospitalized patients by 19-21 days. At that time virus testing for COVID-19 was limited to patients with severe symptoms. Local differences in viral spread was shown by analyzing weekly composite samples of wastewater from five sampling sites for four weeks. The highest amount of virus was found from the central, eastern, and northern parts of the city. SARS-CoV-2 was also found in the treated effluent wastewater from the WWTP discharged into the recipient, the Göta River, although with a reduction of 4-log10. The viral peaks with regular temporal intervals indicated that SARS-CoV-2 may have a cluster spread, probably reflecting that the majority of infected persons only spread the disease during a few days. Our results are important for both the planning of hospital care and to rapidly identify and intervene against local spread of the virus.
  •  
3.
  • Wang, Hao, et al. (författare)
  • Variations among Viruses in Influent Water and Effluent Water at a Wastewater Plant over One Year as Assessed by Quantitative PCR and Metagenomics
  • 2020
  • Ingår i: Applied and Environmental Microbiology. - 1098-5336 .- 0099-2240. ; 86:24, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Influent wastewater and effluent wastewater at the Rya treatment plant in Gothenburg, Sweden, were continuously monitored for enteric viruses by quantitative PCR (qPCR) during 1 year. Viruses in effluent wastewater were also identified by next-generation sequencing (NGS) in samples collected during spring, early summer, and winter. Samples of incoming wastewater were collected every second week. Seasonal variations in viral concentrations in incoming wastewater were found for noroviruses GII, sapovirus, rotavirus, parechovirus, and astrovirus. Norovirus GI and GIV and Aichi virus were present in various amounts during most weeks throughout the year, while hepatitis A virus, enterovirus, and adenovirus were identified less frequently. Fluctuations in viral concentrations in incoming wastewater were related to the number of diagnosed patients. The viruses were also detected in treated wastewater, however, with a 3- to 6-log10 reduction in concentration. Seven different hepatitis E virus (HEV) strains were identified in the effluents. Five of these strains belonged to genotype 3 and have been isolated in Sweden from swine, wild boars, and humans and in drinking water. The other two strains were divergent and had not been identified previously. They were similar to strains infecting rats and humans. Surveillance of enteric viruses in wastewater is a tool for early detection and follow-up of gastroenteritis outbreaks in society and for the identification of new viruses that can cause infection in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy