SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Enghild Jan J) "

Sökning: WFRF:(Enghild Jan J)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Martin, Myriam, et al. (författare)
  • Citrullination of C1-inhibitor as a mechanism of impaired complement regulation in rheumatoid arthritis
  • 2023
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDysregulated complement activation, increased protein citrullination, and production of autoantibodies against citrullinated proteins are hallmarks of rheumatoid arthritis (RA). Citrullination is induced by immune cell-derived peptidyl-Arg deiminases (PADs), which are overactivated in the inflamed synovium. We characterized the effect of PAD2- and PAD4-induced citrullination on the ability of the plasma-derived serpin C1-inhibitor (C1-INH) to inhibit complement and contact system activation. MethodsCitrullination of the C1-INH was confirmed by ELISA and Western blotting using a biotinylated phenylglyoxal probe. C1-INH-mediated inhibition of complement activation was analyzed by C1-esterase activity assay. Downstream inhibition of complement was studied by C4b deposition on heat-aggregated IgGs by ELISA, using pooled normal human serum as a complement source. Inhibition of the contact system was investigated by chromogenic activity assays for factor XIIa, plasma kallikrein, and factor XIa. In addition, autoantibody reactivity to native and citrullinated C1-INH was measured by ELISA in 101 RA patient samples. ResultsC1-INH was efficiently citrullinated by PAD2 and PAD4. Citrullinated C1-INH was not able to bind the serine protease C1s and inhibit its activity. Citrullination of the C1-INH abrogated its ability to dissociate the C1-complex and thus inhibit complement activation. Consequently, citrullinated C1-INH had a decreased capacity to inhibit C4b deposition via the classical and lectin pathways. The inhibitory effect of C1-INH on the contact system components factor XIIa, plasma kallikrein, and factor XIa was also strongly reduced by citrullination. In RA patient samples, autoantibody binding to PAD2- and PAD4-citrullinated C1-INH was detected. Significantly more binding was observed in anti-citrullinated protein antibody (ACPA)-positive than in ACPA-negative samples. ConclusionCitrullination of the C1-INH by recombinant human PAD2 and PAD4 enzymes impaired its ability to inhibit the complement and contact systems in vitro. Citrullination seems to render C1-INH more immunogenic, and citrullinated C1-INH might thus be an additional target of the autoantibody response observed in RA patients.
  •  
2.
  • Bielecka, Ewa, et al. (författare)
  • Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes C5a activity.
  • 2014
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 289:47, s. 32481-32487
  • Tidskriftsartikel (refereegranskat)abstract
    • Evasion of killing by the complement system, a crucial part of innate immunity, is a key evolutionary strategy of many human pathogens. A major etiological agent of chronic periodontitis, the Gram-negative bacterium Porphyromonas gingivalis produces a vast arsenal of virulence factors that compromise human defense mechanisms. One of these is peptidylarginine deiminase (PPAD), an enzyme unique to P. gingivalis among bacteria, which converts Arg residues in polypeptide chains into citrulline. Here, we report that PPAD citrullination of a critical C-terminal arginine of the anaphylatoxin C5a disabled the protein function. Treatment of C5a with PPAD in vitro resulted in decreased chemotaxis of human neutrophils and diminished calcium signaling in monocytic cell line U937 transfected with the C5a receptor (C5aR) and loaded with a fluorescent intracellular calcium probe: Fura 2-AM. Moreover, a low degree of citrullination of internal arginine residues by PPAD was also detected using mass spectrometry. Further, after treatment of C5 with outer membrane vesicles (OMVs) naturally shed by P. gingivalis we observed generation of C5a totally citrullinated at the C-terminal Arg74 residue (Arg74Cit). In stark contrast only native C5a was detected after treatment with PPAD-null OMVs. Our study suggests reduced antibacterial and proinflammatory capacity of citrullinated C5a, achieved via lower level of chemotactic potential of the modified molecule, and weaker cell activation. In the context of previous studies, which showed crosstalk between C5aR and toll-like receptors, as well as enhanced arthritis development in mice infected with PPAD expressing P. gingivalis, our findings support a crucial role of PPAD in the virulence of P. gingivalis.
  •  
3.
  • Koro, Catalin, et al. (författare)
  • Carbamylation of immunoglobulin abrogates activation of the classical complement pathway
  • 2014
  • Ingår i: European Journal of Immunology. - : Wiley. - 1521-4141 .- 0014-2980. ; 44:11, s. 3403-3412
  • Tidskriftsartikel (refereegranskat)abstract
    • Post-translational modifications of proteins significantly affect their structure and function. The carbamylation of positively charged lysine residues to form neutral homoitrulline occurs primarily under inflammatory conditions through myeloperoxidase-dependent cyanate (CNO-) formation. We analyzed the pattern of human IgG(1) carbamylation under inflammatory conditions and the effects that this modification has on the ability of antibodies to trigger complement activation via the classical pathway. We found that the lysine residues of IgG(1) are rapidly modified after brief exposure to CNO-. Interestingly, modifications were not random, but instead limited to only few lysines within the hinge area and the N-terminal fragment of the CH2 domain. A complement activation assay combined with mass spectrometry analysis revealed a highly significant inverse correlation between carbamylation of several key lysine residues within the hinge region and N-terminus of the CH2 domain and the proper binding of C1q to human IgG(1) followed by subsequent complement activation. This severely hindered complement-dependent cytotoxicity of therapeutic IgG(1). The reaction can apparently occur in vivo, as we found carbamylated antibodies in synovial fluid from rheumatoid arthritis patients. Taken together, our data suggest that carbamylation has a profound impact on the complement-activating ability of IgG(1) and reveals a pivotal role for previously uncharacterized lysine residues in this process.
  •  
4.
  • Staniec, Dominika, et al. (författare)
  • Calcium Regulates the Activity and Structural Stability of Tpr, a Bacterial Calpain-like Peptidase.
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 290:45, s. 27248-27260
  • Tidskriftsartikel (refereegranskat)abstract
    • Porphyromonas gingivalis is a peptide-fermenting asaccharolytic periodontal pathogen. Its genome contains several genes encoding cysteine peptidases other than gingipains. One of these genes (PG1055) encodes a protein called Tpr (thiol protease), which has sequence similarity to cysteine peptidases of the papain and calpain families. In this study, we biochemically characterize Tpr. We found that the 55 kDa Tpr inactive zymogen proteolytically processes itself into active forms of 48 kDa, 37 kDa, and 33 kDa via sequential truncations at the N-terminus. These processed molecular forms of Tpr are associated with the bacterial outer membrane, where they are likely responsible for the generation of metabolic peptides required for survival of the pathogen. Both autoprocessing and activity were dependent on calcium concentrations greater than 1 mM, consistent with the protein's activity within the intestinal and inflammatory milieus. Calcium also stabilized the Tpr structure and rendered the protein fully resistant to proteolytic degradation by gingipains. Together, our findings suggest that Tpr is an example of a bacterial calpain, a calcium-responsive peptidase that may generate substrates required for the peptide-fermenting metabolism of P. gingivalis. Aside from nutrient generation, Tpr may also be involved in evasion of host immune response through degradation of the antimicrobial peptide LL-37 and complement proteins C3, C4 and C5. Taken together, these results indicate that Tpr likely represents an important pathogenesis factor for P. gingivalis.
  •  
5.
  • Vogt, Leonie M., et al. (författare)
  • Apolipoprotein E Triggers Complement Activation in Joint Synovial Fluid of Rheumatoid Arthritis Patients by Binding C1q
  • 2020
  • Ingår i: Journal of Immunology. - : American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 204:10, s. 2779-2790
  • Tidskriftsartikel (refereegranskat)abstract
    • We identified apolipoprotein E (ApoE) as one of the proteins that are found in complex with complement component C4d in pooled synovial fluid of rheumatoid arthritis (RA) patients. Immobilized human ApoE activated both the classical and the alternative complement pathways. In contrast, ApoE in solution demonstrated an isoform-dependent inhibition of hemolysis and complement deposition at the level of sC5b-9. Using electron microscopy imaging, we confirmed that ApoE interacts differently with C1q depending on its context; surface-bound ApoE predominantly bound C1q globular heads, whereas ApoE in a solution favored the hinge/stalk region of C1q. As a model for the lipidated state of ApoE in lipoprotein particles, we incorporated ApoE into phosphatidylcholine/phosphatidylethanolamine liposomes and found that the presence of ApoE on liposomes increased deposition of C1q and C4b from serum when analyzed using flow cytometry. In addition, posttranslational modifications associated with RA, such as citrullination and oxidation, reduced C4b deposition, whereas carbamylation enhanced C4b deposition on immobilized ApoE. Posttranslational modification of ApoE did not alter Clq interaction but affected binding of complement inhibitors factor H and C4b -binding protein. This suggests that changed ability of C4b to deposit on modified ApoE may play an important role. Our data show that posttranslational modifications of ApoE alter its interactions with complement. Moreover, ApoE may play different roles in the body depending on its solubility, and in diseased states such as RA, deposited ApoE may induce local complement activation rather than exert its typical role of inhibition.
  •  
6.
  • Berggård, Tord, et al. (författare)
  • Calbindin D28k exhibits properties characteristic of a Ca2+ sensor.
  • 2002
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 277:19, s. 16662-16672
  • Tidskriftsartikel (refereegranskat)abstract
    • Calbindin D28k is a member of the calmodulin super-family of Ca2+ -binding proteins and contains six EF-hands. The protein is generally believed to function as a Ca2+ buffer, but the studies presented in this work indicate that it may also act as a Ca2+ sensor. The results show that Mg2+ binds to the same sites as Ca2+ with an association constant of approximately 1.4 x 10(3) M-1 in 0.15 M KCl. The four high-affinity sites in calbindin D28k bind Ca2+ in a non-sequential, parallel manner. In the presence of physiological concentrations of Mg2+, the Ca2+ -affinity is reduced by a factor of two and the cooperativity, which otherwise is modest, increases. Based on the binding constants determined in the presence of physiological salt concentrations, we estimate that at the Ca2+ concentration in a resting cell calbindin D28k is saturated to 40-75% with Mg2+, but to less than 9 % with Ca2+. In contrast, the protein is expected to be nearly fully saturated with Ca2+ at the Ca2+ level of an activated cell. A substantial conformational change is observed upon Ca2+ binding, but only minor structural changes take place upon Mg2+-binding. This suggests that calbindin D28k undergoes Ca2+ -induced structural changes upon Ca2+ activation of a cell. Thus, calbindin D28k displays several properties that would be expected for a protein involved in Ca2+ -induced signal transmission and hence may function not only as a Ca2+ buffer, but also as a Ca2+ sensor. Digestion patterns resulting from limited proteolysis of the protein suggest that the loop of EF-hand 2, a variant site that does not bind Ca2+, becomes exposed upon Ca2+ binding.
  •  
7.
  • Brüggemann, Holger, et al. (författare)
  • Staphylococcus saccharolyticus Isolated From Blood Cultures and Prosthetic Joint Infections Exhibits Excessive Genome Decay
  • 2019
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The slow-growing, anaerobic, coagulase-negative species Staphylococcus saccharolyticus is found on human skin and in clinical specimens but its pathogenic potential is unclear. Here, we investigated clinical isolates and sequenced the genomes of seven strains of S. saccharolyticus. Phylogenomic analyses showed that the closest relative of S. saccharolyticus is Staphylococcus capitis with an average nucleotide identity of 80%. Previously sequenced strains assigned to S. saccharoiyticus are misclassified and belong to S. capitis. Based on single nucleotide polymorphisms of the core genome, the population of S. saccharolyticus can be divided into two clades that also differ in a few larger genomic islands as part of the flexible genome. An unexpected feature of S. saccharolyticus is extensive genome decay, with over 300 pseudogenes, indicating ongoing reductive evolution. Many genes of the core metabolism are not functional, rendering the species auxotrophic for several amino acids, which could explain its slow growth and need for fastidious growth conditions. Secreted proteins of S. saccharolyticus were determined; they include stress response proteins such as heat and oxidative stress-related factors, as well as immunodominant staphylococcal surface antigens and enzymes that can degrade host tissue components. The strains secrete lipases and a hyaluronic acid lyase. Hyaluronidase as well as urease activities were detected in biochemical assays, with Glade-specific differences. Our study revealed that S. saccharolyticus has adapted its genome, possibly due to a recent change of habitat; moreover, the data imply that the species has tissue-invasive potential and might cause prosthetic joint infections.
  •  
8.
  • Falkenberg, Cecilia, et al. (författare)
  • alpha 1-Microglobulin destroys the proteinase inhibitory activity of alpha 1-inhibitor-3 by complex formation
  • 1995
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 270:9, s. 4478-4483
  • Tidskriftsartikel (refereegranskat)abstract
    • The immunoregulatory plasma protein alpha 1-microglobulin (alpha 1-m) and the proteinase inhibitor alpha 1-inhibitor-3 (alpha 1I3) form a complex in rat plasma. In the present work, it was demonstrated that the alpha 1I3.alpha 1-m complex has no inhibitory activity, the bait region was not cleaved by low amounts of proteinases, and it was unable to covalently incorporate proteinases. The results also indicated that the thiolester bond of the alpha 1I3.alpha 1-m complex was broken. The alpha 1I3.alpha 1-m complex was cleared from the circulation much faster than native alpha 1I3, with a half-life of approximately 7 min. Structurally, however, the alpha 1I3.alpha 1-m complex was similar to native alpha 1I3 rather than alpha 1I3 cleaved by proteinases. It is speculated that the role of alpha 1-m is to destroy the function of alpha 1I3 by blocking the bait region and breaking the thiolester and causing its physical elimination by rapid clearing from the blood circulation. It is also possible that the formation of complexes between alpha 1-m and alpha 1I3 may serve as a mean to regulate the function of alpha 1-m since its complex with alpha 1I3 is taken up rapidly by cellular receptors for alpha-macroglobulins.
  •  
9.
  • Gjelstrup, Louise Carstensen, et al. (författare)
  • The role of higher-order protein structure in supporting binding by heteroclitic monoclonal antibodies: The monoclonal antibody KIM185 to CD18 also binds C4-binding protein
  • 2011
  • Ingår i: Molecular Immunology. - : Elsevier BV. - 1872-9142 .- 0161-5890. ; 49:1-2, s. 38-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Heteroclitic monoclonal antibodies are characterized by the ability to bind multiple epitopes with little or no similarity. Such antibodies have been reported earlier, but insight into to the molecular basis of this propensity is limited. Here we report that the KIM185 antibody to human CD18 reacts with the plasma protein C4b-binding protein (C4BP). This was revealed during affinity purification procedures where human serum was incubated with surfaces coated with monoclonal antibodies to CD18. Other monoclonal antibodies to CD18 (KIM127 and TS1/18) showed no such interaction with C4BP. We constructed a sandwich-type time-resolved immunofluorometric assay using KIM185 both as capture and developing antibody. By use of proteolytic fragments of KIM185 and recombinant deletion mutants of C4BP the interaction sites were mapped to the variable region of KIM185 and the oligomerization domain of C4BP, respectively. C4BP is a large oligomeric plasma protein that binds activated complement factor C4b and other endogenous ligands as well as microorganisms. By use of the recent crystallographic data on the structure of CD11c/CD18 and prediction of the secondary structure of the C4BP oligomerization domain, we show that epitopes bound by KIM185 in these proteins are unlikely to share any major structural similarity. However, both antigens may form oligomers that would enable avid binding by the antibody. Our report points to the astonishing ability of heteroclitic antibodies to accommodate the binding of multiple proteins with no or little structural similarity within the confined space of the variable regions. (C) 2011 Elsevier Ltd. All rights reserved.
  •  
10.
  • Karring, Henrik, et al. (författare)
  • The human cornea proteome: bioinformatic analyses indicate import of plasma proteins into the cornea
  • 2006
  • Ingår i: Molecular Vision. - 1090-0535. ; 12, s. 451-460
  • Forskningsöversikt (refereegranskat)abstract
    • Increased biochemical knowledge of normal and diseased corneas is essential for the understanding of corneal homeostasis and pathophysiology. In a recent study, we characterized the proteome of the normal human cornea and identified 141 distinct proteins. This dataset represents the most comprehensive protein study of the cornea to date and provides a useful reference for further studies of normal and diseased human corneas. The list of identified proteins is available at the Cornea Protein Database. In the present paper, we review the utilized procedures for extraction and fractionation of corneal proteins and discuss the potential roles of the identified proteins in relation to homeostasis, diseases, and wound-healing of the cornea. In addition, we compare the list of identified proteins with high quality gene expression libraries (cDNA libraries) and Serial Analysis of Gene Expression (SAGE) data. Of the 141 proteins, 86 (61%) were recognized in cDNA libraries from the corneas of dogs and rabbits, or humans with keratoconus, and 98 (69.5%) were recognized in SAGE data of mouse and human corneas. However, the percentages of identified genes in each of the protein functional groups differed markedly. Thus, exceptionally few of the traditional blood/plasma proteins and immune defense proteins that were identified in the human cornea were recognized in the gene expression libraries of the cornea. This observation strongly indicates that these abundant corneal proteins are not expressed in the cornea but originate from the surrounding pericorneal tissue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy