SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Englund Göran Professor) srt2:(2010-2014)"

Sökning: WFRF:(Englund Göran Professor) > (2010-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sjödin, Henrik, 1975- (författare)
  • Population-level consequences of spatial interactions
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • How is the nature of populations governed by the movement decisions made by their members? This is the core question in this thesis. To answer this question, I first assume that s movement decisions are based on conditions in their local environment. Then I derive mathematical relationships that distil the character of individual movement events, and relate the sum of these events to the dynamical properties of the population. I find that the fate of populations depend delicately on the way resident individuals relocate in response to local conditions. This general conclusion is supported by results in the four papers constituting this thesis.In the first paper we derive a deterministic approximation of a stochastic individual-based spatial predator-prey model. We show how general types of movement behaviors either stabilise or destabilise predator-prey dynamics. Based on experimental data on movement behaviors, we conclude that predator-prey dynamics are stabilised if the prey species respond stronger to predator presence than the predatory species respond to prey.In the second paper we derive a new type of functional response that arise when there is a behavioral spatial “race” between predators and prey. Although fundamentally different from classical functional responses, the induced density-dependencies in reproduction rates are similar to those in Holling’s type II and DeAngelis-Beddington’s functional responses.In the third paper we perform a novel systematic investigation of density-dependencies in population growth-rates induced by the spatial covariance in empirical predator-prey systems. We categorise three types of density dependencies: “lagged”, “direct” and “independent”, and find direct and especially lagged density-dependencies to be common. We find that the density-dependencies in most cases are destabilising, which is at odds with the wide-spread view that spatial heterogeneity stabilises consumer-resource dynamics. We also find dependencies of prey density to be more common than of predator density.In the forth paper we consider the evolution of cooperation. We formulate a stochastic individual-based group-formation process and show that profit-dependent group disengagement is evolutionarily stable and allows the emergence of stable cooperative communities.
  •  
2.
  • Nonaka, Etsuko, 1971- (författare)
  • Evolutionary consequences of ecological interactions
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Eco-evolutionary dynamics integrates the reciprocal interactions betweenecology and evolution. These two branches of biology traditionally assumethe other as static for simplicity. However, increasing evidence shows thatthis simplification may not always hold because ecology and evolution canoperate in similar timescales. This thesis theoretically explores how thereciprocal interactions may influence ecological and evolutionary outcomesin four different eco-evolutionary contexts.Many species of non-social animals live in groups. Aggregating ingroups often has both benefits and costs that depend on group size. Thanksto the benefits of aggregation, population growth likely depends positivelyon population density when it is small. This phenomenon, the Allee effect,has been hypothesized to explain the evolution of aggregation behavior. Ifind that the Allee effect alone does not lead to the evolution whenpopulation dynamics is explicitly accounted for. Some other mechanisms,such as frequent needs for colonizing new patches or anti-aggregation,should be invoked to explain why aggregation behavior could evolve.Phenotypic plasticity is the ability of a genotype to express distinctphenotypes when exposed to different environments. Although it is oftenshown to be adaptive and not costly, highly plastic organisms are rare. Paststudies demonstrated some potential reasons. I test another possibility; costsmay arise from sexual selection because highly plastic individuals may beless preferred as a mate. I show that, even in the absence of the direct cost ofplasticity, the level of plasticity remained low at intermediate strengths ofassortative mating. This pattern is robust across wide ranges of parametervalues.Ecological speciation occurs when ecologically divergent selectionbetween environments causes reproductive isolation between divergingsubpopulations. Several verbal models of ecological speciation emphasizethe roles of phenotypic plasticity in promoting speciation. The complexprocesses involved in speciation, however, are difficult to be evaluated byverbal accounts. I quantitatively test the proposed idea in a mechanisticmodel of ecological speciation in the presence and absence of plasticity. Ifind conditions under which plasticity can promote or hinder ecologicalspeciation. Plasticity facilitates speciation by producing a gap in thedistributions of expressed phenotypes, which serves as a barrier to gene flowin an assortatively mating population.Ecosystem ecology and evolutionary biology are the least integratedfields in ecology and evolution. Natural selection operating at the individuallevels on traits governing ecosystem functions may affect ecosystemproperties, which may feedback to individuals. I reviewed this idea anddemonstrate the feedback loop by using a simple consumer-resource model.
  •  
3.
  • Öhlund, Gunnar, 1977- (författare)
  • Ecological and evolutionary effects of predation in environmental gradients
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Understanding species interactions and how they affect densities and distributions of organisms is a central theme in ecological research. Studying such interactions in an ecosystem context is challenging as they often depend on species-specific characteristics and rates that not only change during the ontogeny of an organism, but also are affected by the surrounding environment. This thesis focuses on two separate questions and study systems that highlight different aspects of how effects of predation can depend on environmental conditions. In the first part of the thesis, we studied how temperature affects attack rate and handling time, two ecological rates with profound importance for predator-prey dynamics. Using a metaanalysis, we first show that the currently dominating model for temperature dependence in predator-prey interactions, i.e. the Arrhenius equation, has weak support in available empirical literature. This suggests that we need new rules for how and when we can generalize on the temperature-dependence of intake rates. We then use a simple model and a series of experiments to demonstrate that differences in the relative physiological capacity between predator and prey can impose strong non-linear effects on temperature-response curves of attack rate. In the second part of the thesis, we study the role of predation along a benthic-pelagic habitat gradient in promoting divergence and resource polymorphism among prey. We show that presence of a large piscivorous predator, the northern pike (Esox lucius), induces dwarfs, giants or divergence into both ecotypes in populations of European whitefish (Coregonus lavaretus) depending on lake characteristics. Using dated introductions of whitefish as controlled natural experiments, we show that pike presence induces rapid life history divergence between pelagic and littoral habitat use strategies, and that this divergence can translate into partial reproductive isolation in a matter of decades. Our results demonstrate the potential for thresholds in a crucial ecological rate, setting the stage for tipping points with potentially far reaching implications for effects of warming on predator prey dynamics and ecosystem stability. Moreover, they illustrate the potentially drastic consequences of such tipping points by demonstrating the importance of a single predator species as a driving force behind the creation and maintenance of biodiversity in a natural system.  
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy